BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18075646)

  • 1. Remarkable incorporation of the first sulfur containing indole derivative: another piece in the biosynthetic puzzle of crucifer phytoalexins.
    Pedras MS; Okinyo DP
    Org Biomol Chem; 2008 Jan; 6(1):51-4. PubMed ID: 18075646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The biosynthetic pathway of crucifer phytoalexins and phytoanticipins: de novo incorporation of deuterated tryptophans and quasi-natural compounds.
    Pedras MSC; Okinyo-Owiti DP; Thoms K; Adio AM
    Phytochemistry; 2009 Jun; 70(9):1129-1138. PubMed ID: 19560792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembling the biosynthetic puzzle of crucifer metabolites: indole-3-acetaldoxime is incorporated efficiently into phytoalexins but glucobrassicin is not.
    Pedras MS; Montaut S; Xu Y; Khan AQ; Loukaci A
    Chem Commun (Camb); 2001 Sep; (17):1572-3. PubMed ID: 12240387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. En route to erucalexin: a unique rearrangement in the crucifer phytoalexin biosynthetic pathway.
    Pedras MS; Okinyo DP
    Chem Commun (Camb); 2006 May; (17):1848-50. PubMed ID: 16622504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unprecedented chemical structure and biomimetic synthesis of erucalexin, a phytoalexin from the wild crucifer Erucastrum gallicum.
    Pedras MS; Suchy M; Ahiahonu PW
    Org Biomol Chem; 2006 Feb; 4(4):691-701. PubMed ID: 16467943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoalexins from the crucifer rutabaga: structures, syntheses, biosyntheses, and antifungal activity.
    Pedras MS; Montaut S; Suchy M
    J Org Chem; 2004 Jun; 69(13):4471-6. PubMed ID: 15202903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical defenses of crucifers: elicitation and metabolism of phytoalexins and indole-3-acetonitrile in brown mustard and turnip.
    Pedras MS; Nycholat CM; Montaut S; Xu Y; Khan AQ
    Phytochemistry; 2002 Mar; 59(6):611-25. PubMed ID: 11867093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tryptophan-derived sulfur-containing phytoalexins--a general overview.
    Ruszkowska J; Wróbel JT
    Adv Exp Med Biol; 2003; 527():629-36. PubMed ID: 15206782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enantiomeric excess of a cruciferous phytoalexin, spirobrassinin, and its enantiomeric enrichment in an achiral HPLC system.
    Monde K; Harada N; Takasugi M; Kutschy P; Suchy M; Dzurilla M
    J Nat Prod; 2000 Sep; 63(9):1312-4. PubMed ID: 11000049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation.
    Pedras MS; Chumala PB; Jin W; Islam MS; Hauck DW
    Phytochemistry; 2009 Feb; 70(3):394-402. PubMed ID: 19223049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the enantiomeric purity of the phytoalexins spirobrassinins by 1H NMR using chiral solvation.
    Pedras MS; Hossain M; Sarwar MG; Montaut S
    Bioorg Med Chem Lett; 2004 Nov; 14(22):5469-71. PubMed ID: 15482905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antiproliferative and cancer chemopreventive activity of phytoalexins: focus on indole phytoalexins from crucifers.
    Mezencev R; Mojzis J; Pilatova M; Kutschy P
    Neoplasma; 2003; 50(4):239-45. PubMed ID: 12937834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin A, wasalexins and camalexin.
    Pedras MS; Adio AM
    Phytochemistry; 2008 Feb; 69(4):889-93. PubMed ID: 18078965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tenualexin, other phytoalexins and indole glucosinolates from wild cruciferous species.
    Pedras MS; Yaya EE
    Chem Biodivers; 2014 Jun; 11(6):910-8. PubMed ID: 24934676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytoalexins and polar metabolites from the oilseeds canola and rapeseed: differential metabolic responses to the biotroph Albugo candida and to abiotic stress.
    Pedras MS; Zheng QA; Gadagi RS; Rimmer SR
    Phytochemistry; 2008 Feb; 69(4):894-910. PubMed ID: 18039546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic changes in roots of the oilseed canola infected with the biotroph Plasmodiophora brassicae: phytoalexins and phytoanticipins.
    Pedras MS; Zheng QA; Strelkov S
    J Agric Food Chem; 2008 Nov; 56(21):9949-61. PubMed ID: 18834132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biosynthesis of cabbage phytoalexins from indole glucosinolate.
    Klein AP; Sattely ES
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1910-1915. PubMed ID: 28154137
    [No Abstract]   [Full Text] [Related]  

  • 18. Phytoalexins of the crucifer Barbarea vulgaris: Structural profile and correlation with glucosinolate turnover.
    Cárdenas PD; Landtved JP; Larsen SH; Lindegaard N; Wøhlk S; Jensen KR; Pattison DI; Burow M; Bak S; Crocoll C; Agerbirk N
    Phytochemistry; 2023 Sep; 213():113742. PubMed ID: 37269935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot enantioselective synthesis of (S)-spirobrassinin and non-natural (S)-methylspirobrassinin from amino acids using a turnip enzyme.
    Ryu K; Nakamura S; Nakashima S; Matsuda H
    J Nat Med; 2021 Mar; 75(2):308-318. PubMed ID: 33389552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins.
    Pedras MS; Zheng QA; Gadagi RS
    Chem Commun (Camb); 2007 Jan; (4):368-70. PubMed ID: 17220973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.