These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 18075660)

  • 1. Efficient generation of dendritic arrays of cross-linked hemoglobin: symmetry and redundancy.
    Hu D; Kluger R
    Org Biomol Chem; 2008 Jan; 6(1):151-6. PubMed ID: 18075660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional cross-linked hemoglobin bis-tetramers: geometry and cooperativity.
    Hu D; Kluger R
    Biochemistry; 2008 Nov; 47(47):12551-61. PubMed ID: 18956893
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel site-directed affinity reagent for cross-linking human hemoglobin: bis[2-(4-phosphonooxyphenoxy)carbonylethyl]phosphinic acid.
    Roach TA; Macdonald VW; Hosmane RS
    J Med Chem; 2004 Nov; 47(24):5847-59. PubMed ID: 15537342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient chemical introduction of a disulfide cross-link and conjugation site into human hemoglobin at beta-lysine-82 utilizing a bifunctional aminoacyl phosphate.
    Kluger R; Li X
    Bioconjug Chem; 1997; 8(6):921-6. PubMed ID: 9404667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjoined hemoglobins. Loss of cooperativity and protein-protein interactions.
    Gourianov N; Kluger R
    Biochemistry; 2005 Nov; 44(45):14989-99. PubMed ID: 16274245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-linked bis-hemoglobins: connections and oxygen binding.
    Gourianov N; Kluger R
    J Am Chem Soc; 2003 Sep; 125(36):10885-92. PubMed ID: 12952468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemoglobin dendrimers: functional protein clusters.
    Kluger R; Zhang J
    J Am Chem Soc; 2003 May; 125(20):6070-1. PubMed ID: 12785833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bis[2-(3-carboxyphenoxy)carbonylethyl]phosphinic acid (m-BCCEP): a novel affinity cross-linking reagent for the beta-cleft modification of human hemoglobin.
    Cai H; Roach TA; Dabek M; Somerville KS; Acharya S; Hosmane RS
    Bioconjug Chem; 2010 Aug; 21(8):1494-507. PubMed ID: 20715854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing nitrite reductase activity of modified hemoglobin: bis-tetramers and their PEGylated derivatives.
    Lui FE; Kluger R
    Biochemistry; 2009 Dec; 48(50):11912-9. PubMed ID: 19894773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combinatorial electrostatic collision-induced dissociative chemical cross-linking reagents for probing protein surface topology.
    Liu F; Goshe MB
    Anal Chem; 2010 Jul; 82(14):6215-23. PubMed ID: 20560670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycol conjugation enhances the nitrite reductase activity of native and cross-linked hemoglobin.
    Lui FE; Dong P; Kluger R
    Biochemistry; 2008 Oct; 47(40):10773-80. PubMed ID: 18795797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shotgun cross-linking analysis for studying quaternary and tertiary protein structures.
    Lee YJ; Lackner LL; Nunnari JM; Phinney BS
    J Proteome Res; 2007 Oct; 6(10):3908-17. PubMed ID: 17854217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of cross-linked human hemoglobin by conventional isoelectric focusing, immobilized pH gradients, capillary electrophoresis, and mass spectrometry.
    Bossi A; Patel MJ; Webb EJ; Baldwin MA; Jacob RJ; Burlingame AL; Righetti PG
    Electrophoresis; 1999 Oct; 20(14):2810-7. PubMed ID: 10546811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bis[2-(4-carboxyphenoxy)carbonylethyl]phosphinic acid (BCCEP): a novel affinity reagent for the beta-cleft modification of human hemoglobin.
    Hosmane RS; Peri SP; Bhadti VS; Macdonald VW
    Bioorg Med Chem; 1998 Jun; 6(6):767-83. PubMed ID: 9681142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biochemical properties of intramolecularly cross-linked hemoglobin].
    Azhigirova MA; Viazova EP; Vashkevich MG; Fetisova LV; Kontuganov NN
    Biull Eksp Biol Med; 1988 Sep; 106(9):302-4. PubMed ID: 3167181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel dynamic heterogeneous phase polymerization reaction for poly-hemoglobin with narrow molecular weight distribution.
    Wang X; Huang L; Wang JF; Yang CM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(5):439-44. PubMed ID: 18821090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic analysis of subunit oligomerization of the legume lectin soybean agglutinin.
    Chatterjee M; Mandal DK
    Biochemistry; 2003 Oct; 42(42):12217-22. PubMed ID: 14567683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-point cross-linking: potential red cell substitutes from the reaction of trimesoyl tris(methyl phosphate) with hemoglobin.
    Kluger R; Wodzinska J; Jones RT; Head C; Fujita TS; Shih DT
    Biochemistry; 1992 Aug; 31(33):7551-9. PubMed ID: 1510941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.