BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 18075676)

  • 1. A general system for evaluating the efficiency of chromophore-assisted light inactivation (CALI) of proteins reveals Ru(II) tris-bipyridyl as an unusually efficient "warhead".
    Lee J; Yu P; Xiao X; Kodadek T
    Mol Biosyst; 2008 Jan; 4(1):59-65. PubMed ID: 18075676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.
    Keppler A; Ellenberg J
    ACS Chem Biol; 2009 Feb; 4(2):127-38. PubMed ID: 19191588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromophore-assisted light inactivation of HaloTag fusion proteins labeled with eosin in living cells.
    Takemoto K; Matsuda T; McDougall M; Klaubert DH; Hasegawa A; Los GV; Wood KV; Miyawaki A; Nagai T
    ACS Chem Biol; 2011 May; 6(5):401-6. PubMed ID: 21226520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward understanding the mechanism of chromophore-assisted laser inactivation--evidence for the primary photochemical steps.
    Horstkotte E; Schröder T; Niewöhner J; Thiel E; Jay DG; Henning SW
    Photochem Photobiol; 2005; 81(2):358-66. PubMed ID: 15623352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically targeted chromophore-assisted light inactivation.
    Tour O; Meijer RM; Zacharias DA; Adams SR; Tsien RY
    Nat Biotechnol; 2003 Dec; 21(12):1505-8. PubMed ID: 14625562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potent and selective photo-inactivation of proteins with peptoid-ruthenium conjugates.
    Lee J; Udugamasooriya DG; Lim HS; Kodadek T
    Nat Chem Biol; 2010 Apr; 6(4):258-60. PubMed ID: 20228793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitization of ruthenium nitrosyls to visible light via direct coordination of the dye resorufin: trackable NO donors for light-triggered NO delivery to cellular targets.
    Rose MJ; Fry NL; Marlow R; Hinck L; Mascharak PK
    J Am Chem Soc; 2008 Jul; 130(27):8834-46. PubMed ID: 18597437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorophore-assisted light inactivation of calmodulin involves singlet-oxygen mediated cross-linking and methionine oxidation.
    Yan P; Xiong Y; Chen B; Negash S; Squier TC; Mayer MU
    Biochemistry; 2006 Apr; 45(15):4736-48. PubMed ID: 16605242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiphoton excitation-evoked chromophore-assisted laser inactivation using green fluorescent protein.
    Tanabe T; Oyamada M; Fujita K; Dai P; Tanaka H; Takamatsu T
    Nat Methods; 2005 Jul; 2(7):503-5. PubMed ID: 15973419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of photosensitized singlet oxygen production by a fluorescent protein.
    Ragàs X; Cooper LP; White JH; Nonell S; Flors C
    Chemphyschem; 2011 Jan; 12(1):161-5. PubMed ID: 21226197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced EGFP-chromophore-assisted laser inactivation using deficient cells rescued with functional EGFP-fusion proteins.
    Vitriol EA; Uetrecht AC; Shen F; Jacobson K; Bear JE
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6702-7. PubMed ID: 17420475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of chromophore assisted laser inactivation employing fluorescent proteins.
    McLean MA; Rajfur Z; Chen Z; Humphrey D; Yang B; Sligar SG; Jacobson K
    Anal Chem; 2009 Mar; 81(5):1755-61. PubMed ID: 19199572
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ru(II) complexes of new tridentate ligands: unexpected high yield of sensitized 1O2.
    Liu Y; Hammitt R; Lutterman DA; Joyce LE; Thummel RP; Turro C
    Inorg Chem; 2009 Jan; 48(1):375-85. PubMed ID: 19035764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed.
    Bulina ME; Lukyanov KA; Britanova OV; Onichtchouk D; Lukyanov S; Chudakov DM
    Nat Protoc; 2006; 1(2):947-53. PubMed ID: 17406328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ruthenium-Containing Block Copolymer Assemblies: Red-Light-Responsive Metallopolymers with Tunable Nanostructures for Enhanced Cellular Uptake and Anticancer Phototherapy.
    Sun W; Parowatkin M; Steffen W; Butt HJ; Mailänder V; Wu S
    Adv Healthc Mater; 2016 Feb; 5(4):467-73. PubMed ID: 26680371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoresponsive ruthenium-containing polymers: potential polymeric metallodrugs for anticancer phototherapy.
    Sun W; Zeng X; Wu S
    Dalton Trans; 2018 Jan; 47(2):283-286. PubMed ID: 29177301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-controlled targeted intracellular delivery of both nitric oxide and singlet oxygen using a fluorescence-trackable ruthenium nitrosyl functional nanoplatform.
    Xiang HJ; An L; Tang WW; Yang SP; Liu JG
    Chem Commun (Camb); 2015 Feb; 51(13):2555-8. PubMed ID: 25567668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer dynamics in light-harvesting assemblies templated by the tobacco mosaic virus coat protein.
    Ma YZ; Miller RA; Fleming GR; Francis MB
    J Phys Chem B; 2008 Jun; 112(22):6887-92. PubMed ID: 18471010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent labeling of proteins in living cells using the FKBP12 (F36V) tag.
    Robers M; Pinson P; Leong L; Batchelor RH; Gee KR; Machleidt T
    Cytometry A; 2009 Mar; 75(3):207-24. PubMed ID: 18837033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A genetically encoded photosensitizer.
    Bulina ME; Chudakov DM; Britanova OV; Yanushevich YG; Staroverov DB; Chepurnykh TV; Merzlyak EM; Shkrob MA; Lukyanov S; Lukyanov KA
    Nat Biotechnol; 2006 Jan; 24(1):95-9. PubMed ID: 16369538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.