These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 18076032)
1. Using quantum mechanics to improve estimates of amino acid side chain rotamer energies. Renfrew PD; Butterfoss GL; Kuhlman B Proteins; 2008 Jun; 71(4):1637-46. PubMed ID: 18076032 [TBL] [Abstract][Full Text] [Related]
2. Free energies of amino acid side-chain rotamers in alpha-helices, beta-sheets and alpha-helix N-caps. Stapley BJ; Doig AJ J Mol Biol; 1997 Sep; 272(3):456-64. PubMed ID: 9325103 [TBL] [Abstract][Full Text] [Related]
3. The energetics of off-rotamer protein side-chain conformations. Petrella RJ; Karplus M J Mol Biol; 2001 Oct; 312(5):1161-75. PubMed ID: 11580256 [TBL] [Abstract][Full Text] [Related]
4. Intrinsic energy landscapes of amino acid side-chains. Zhu X; Lopes PE; Shim J; MacKerell AD J Chem Inf Model; 2012 Jun; 52(6):1559-72. PubMed ID: 22582825 [TBL] [Abstract][Full Text] [Related]
5. Incorporating knowledge-based biases into an energy-based side-chain modeling method: application to comparative modeling of protein structure. Mendes J; Nagarajaram HA; Soares CM; Blundell TL; Carrondo MA Biopolymers; 2001 Aug; 59(2):72-86. PubMed ID: 11373721 [TBL] [Abstract][Full Text] [Related]
6. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C J Chem Theory Comput; 2015 Aug; 11(8):3696-713. PubMed ID: 26574453 [TBL] [Abstract][Full Text] [Related]
7. Toward the Accuracy and Speed of Protein Side-Chain Packing: A Systematic Study on Rotamer Libraries. Huang X; Pearce R; Zhang Y J Chem Inf Model; 2020 Jan; 60(1):410-420. PubMed ID: 31851497 [TBL] [Abstract][Full Text] [Related]
8. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. Tian C; Kasavajhala K; Belfon KAA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; Pincay J; Wu Q; Simmerling C J Chem Theory Comput; 2020 Jan; 16(1):528-552. PubMed ID: 31714766 [TBL] [Abstract][Full Text] [Related]
9. Rotamers: to be or not to be? An analysis of amino acid side-chain conformations in globular proteins. Schrauber H; Eisenhaber F; Argos P J Mol Biol; 1993 Mar; 230(2):592-612. PubMed ID: 8464066 [TBL] [Abstract][Full Text] [Related]
10. Development of a rotamer library for use in beta-peptide foldamer computational design. Shandler SJ; Shapovalov MV; Dunbrack RL; DeGrado WF J Am Chem Soc; 2010 Jun; 132(21):7312-20. PubMed ID: 20446685 [TBL] [Abstract][Full Text] [Related]
11. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins. Avbelj F J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873 [TBL] [Abstract][Full Text] [Related]
12. A backbone-dependent rotamer library with high (ϕ, ψ) coverage using metadynamics simulations. Mortensen JC; Damjanovic J; Miao J; Hui T; Lin YS Protein Sci; 2022 Dec; 31(12):e4491. PubMed ID: 36327064 [TBL] [Abstract][Full Text] [Related]
13. Protein design using continuous rotamers. Gainza P; Roberts KE; Donald BR PLoS Comput Biol; 2012 Jan; 8(1):e1002335. PubMed ID: 22279426 [TBL] [Abstract][Full Text] [Related]
14. A rotamer library to enable modeling and design of peptoid foldamers. Renfrew PD; Craven TW; Butterfoss GL; Kirshenbaum K; Bonneau R J Am Chem Soc; 2014 Jun; 136(24):8772-82. PubMed ID: 24823488 [TBL] [Abstract][Full Text] [Related]
15. Improved side-chain prediction accuracy using an ab initio potential energy function and a very large rotamer library. Peterson RW; Dutton PL; Wand AJ Protein Sci; 2004 Mar; 13(3):735-51. PubMed ID: 14978310 [TBL] [Abstract][Full Text] [Related]
16. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field. Kozłowska U; Maisuradze GG; Liwo A; Scheraga HA J Comput Chem; 2010 Apr; 31(6):1154-67. PubMed ID: 20017135 [TBL] [Abstract][Full Text] [Related]
17. SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations. Nagata K; Randall A; Baldi P Proteins; 2012 Jan; 80(1):142-53. PubMed ID: 22072531 [TBL] [Abstract][Full Text] [Related]
18. Equilibrium transitions between side-chain conformations in leucine and isoleucine. Caballero D; Smith WW; O'Hern CS; Regan L Proteins; 2015 Aug; 83(8):1488-99. PubMed ID: 26018846 [TBL] [Abstract][Full Text] [Related]
19. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. I. The method. Kozłowska U; Liwo A; Scheraga HA J Comput Chem; 2010 Apr; 31(6):1143-53. PubMed ID: 20073062 [TBL] [Abstract][Full Text] [Related]
20. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Shapovalov MV; Dunbrack RL Structure; 2011 Jun; 19(6):844-58. PubMed ID: 21645855 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]