BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

345 related articles for article (PubMed ID: 18076053)

  • 1. Probing electrostatic interactions and ligand binding in aspartyl-tRNA synthetase through site-directed mutagenesis and computer simulations.
    Thompson D; Lazennec C; Plateau P; Simonson T
    Proteins; 2008 May; 71(3):1450-60. PubMed ID: 18076053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase.
    Archontis G; Simonson T; Karplus M
    J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific amino acid recognition by aspartyl-tRNA synthetase studied by free energy simulations.
    Archontis G; Simonson T; Moras D; Karplus M
    J Mol Biol; 1998 Feb; 275(5):823-46. PubMed ID: 9480772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free-energy simulations and experiments reveal long-range electrostatic interactions and substrate-assisted specificity in an aminoacyl-tRNA synthetase.
    Thompson D; Plateau P; Simonson T
    Chembiochem; 2006 Feb; 7(2):337-44. PubMed ID: 16408313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational design of protein-ligand binding: modifying the specificity of asparaginyl-tRNA synthetase.
    Lopes A; Schmidt Am Busch M; Simonson T
    J Comput Chem; 2010 Apr; 31(6):1273-86. PubMed ID: 19862811
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs.
    Eriani G; Gangloff J
    J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expanding tRNA recognition of a tRNA synthetase by a single amino acid change.
    Feng L; Tumbula-Hansen D; Toogood H; Soll D
    Proc Natl Acad Sci U S A; 2003 May; 100(10):5676-81. PubMed ID: 12730374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The free yeast aspartyl-tRNA synthetase differs from the tRNA(Asp)-complexed enzyme by structural changes in the catalytic site, hinge region, and anticodon-binding domain.
    Sauter C; Lorber B; Cavarelli J; Moras D; Giegé R
    J Mol Biol; 2000 Jun; 299(5):1313-24. PubMed ID: 10873455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational protein design with a generalized Born solvent model: application to Asparaginyl-tRNA synthetase.
    Polydorides S; Amara N; Aubard C; Plateau P; Simonson T; Archontis G
    Proteins; 2011 Dec; 79(12):3448-68. PubMed ID: 21563215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ammonium scanning in an enzyme active site. The chiral specificity of aspartyl-tRNA synthetase.
    Thompson D; Lazennec C; Plateau P; Simonson T
    J Biol Chem; 2007 Oct; 282(42):30856-68. PubMed ID: 17690095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single amino acid changes in AspRS reveal alternative routes for expanding its tRNA repertoire in vivo.
    Martin F; Barends S; Eriani G
    Nucleic Acids Res; 2004; 32(13):4081-9. PubMed ID: 15289581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics simulations show that bound Mg2+ contributes to amino acid and aminoacyl adenylate binding specificity in aspartyl-tRNA synthetase through long range electrostatic interactions.
    Thompson D; Simonson T
    J Biol Chem; 2006 Aug; 281(33):23792-803. PubMed ID: 16774919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active site mapping of yeast aspartyl-tRNA synthetase by in vivo selection of enzyme mutations lethal for cell growth.
    Ador L; Camasses A; Erbs P; Cavarelli J; Moras D; Gangloff J; Eriani G
    J Mol Biol; 1999 Apr; 288(2):231-42. PubMed ID: 10329139
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation and evolution of the magnesium-binding site of a class II aminoacyl-tRNA synthetase.
    Ador L; Jaeger S; Geslain R; Martin F; Cavarelli J; Eriani G
    Biochemistry; 2004 Jun; 43(22):7028-37. PubMed ID: 15170340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anticodon-binding domain swapping in a nondiscriminating aspartyl-tRNA synthetase reveals contributions to tRNA specificity and catalytic activity.
    Chuawong P; Likittrakulwong W; Suebka S; Wiriyatanakorn N; Saparpakorn P; Taweesablamlert A; Sudprasert W; Hendrickson T; Svasti J
    Proteins; 2020 Sep; 88(9):1133-1142. PubMed ID: 32067260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An intermediate step in the recognition of tRNA(Asp) by aspartyl-tRNA synthetase.
    Briand C; Poterszman A; Eiler S; Webster G; Thierry J; Moras D
    J Mol Biol; 2000 Jun; 299(4):1051-60. PubMed ID: 10843857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nondiscriminating aspartyl-tRNA synthetase from Helicobacter pylori: anticodon-binding domain mutations that impact tRNA specificity and heterologous toxicity.
    Chuawong P; Hendrickson TL
    Biochemistry; 2006 Jul; 45(26):8079-87. PubMed ID: 16800632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. tRNA anticodon recognition and specification within subclass IIb aminoacyl-tRNA synthetases.
    Commans S; Lazard M; Delort F; Blanquet S; Plateau P
    J Mol Biol; 1998 May; 278(4):801-13. PubMed ID: 9614943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An intricate RNA structure with two tRNA-derived motifs directs complex formation between yeast aspartyl-tRNA synthetase and its mRNA.
    Ryckelynck M; Masquida B; Giegé R; Frugier M
    J Mol Biol; 2005 Dec; 354(3):614-29. PubMed ID: 16257416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure networks of E. coli glutaminyl-tRNA synthetase: effects of ligand binding.
    Sathyapriya R; Vishveshwara S
    Proteins; 2007 Aug; 68(2):541-50. PubMed ID: 17444518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.