These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 18076071)

  • 61. Glutathione sulfinamide serves as a selective, endogenous biomarker for nitroxyl after exposure to therapeutic levels of donors.
    Johnson GM; Chozinski TJ; Gallagher ES; Aspinwall CA; Miranda KM
    Free Radic Biol Med; 2014 Nov; 76():299-307. PubMed ID: 25064322
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Part III. Molecular changes induced by high nitric oxide adaptation in human breast cancer cell line BT-20 (BT-20-HNO): a switch from aerobic to anaerobic metabolism.
    De Vitto H; Mendonça BS; Elseth KM; Onul A; Xue J; Vesper BJ; Gallo CV; Rumjanek FD; Paradise WA; Radosevich JA
    Tumour Biol; 2013 Feb; 34(1):403-13. PubMed ID: 23238817
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Antioxidant actions of nitroxyl (HNO).
    Lopez BE; Shinyashiki M; Han TH; Fukuto JM
    Free Radic Biol Med; 2007 Feb; 42(4):482-91. PubMed ID: 17275680
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Direct and nitroxyl (HNO)-mediated reactions of acyloxy nitroso compounds with the thiol-containing proteins glyceraldehyde 3-phosphate dehydrogenase and alkyl hydroperoxide reductase subunit C.
    Mitroka S; Shoman ME; DuMond JF; Bellavia L; Aly OM; Abdel-Aziz M; Kim-Shapiro DB; King SB
    J Med Chem; 2013 Sep; 56(17):6583-92. PubMed ID: 23895568
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nitroxyl (HNO) as a vasoprotective signaling molecule.
    Bullen ML; Miller AA; Andrews KL; Irvine JC; Ritchie RH; Sobey CG; Kemp-Harper BK
    Antioxid Redox Signal; 2011 May; 14(9):1675-86. PubMed ID: 20673125
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Gene expression profiles of NO- and HNO-donor treated breast cancer cells: insights into tumor response and resistance pathways.
    Cheng RY; Basudhar D; Ridnour LA; Heinecke JL; Kesarwala AH; Glynn S; Switzer CH; Ambs S; Miranda KM; Wink DA
    Nitric Oxide; 2014 Dec; 43():17-28. PubMed ID: 25153034
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester.
    Tang Z; Yuan S; Hu Y; Zhang H; Wu W; Zeng Z; Yang J; Yun J; Xu R; Huang P
    J Bioenerg Biomembr; 2012 Feb; 44(1):117-25. PubMed ID: 22350014
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Nicotine-mediated suppression of the retinoic acid metabolizing enzyme CYP26A1 limits the oncogenic potential of breast cancer.
    Osanai M; Lee GH
    Cancer Sci; 2011 Jun; 102(6):1158-63. PubMed ID: 21371177
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Cytotoxicity of nitroxyl (HNO/NO-) against normal and cancer human cells.
    Augustyniak A; Skolimowski J; Błaszczyk A
    Chem Biol Interact; 2013 Nov; 206(2):262-71. PubMed ID: 24121186
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nitroxyl (HNO): chemistry, biochemistry, and pharmacology.
    Fukuto JM; Switzer CH; Miranda KM; Wink DA
    Annu Rev Pharmacol Toxicol; 2005; 45():335-55. PubMed ID: 15822180
    [TBL] [Abstract][Full Text] [Related]  

  • 71. In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo.
    Yao K; Gietema JA; Shida S; Selvakumaran M; Fonrose X; Haas NB; Testa J; O'Dwyer PJ
    Br J Cancer; 2005 Dec; 93(12):1356-63. PubMed ID: 16333244
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Affinity-Driven Covalent Modulator of the Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Cascade.
    Chern J; Lu CP; Fang Z; Chang CM; Hua KF; Chen YT; Ng CY; Chen YS; Lam Y; Wu SH
    Angew Chem Int Ed Engl; 2018 Jun; 57(24):7040-7045. PubMed ID: 29664161
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A Predictive Model for Selective Targeting of the Warburg Effect through GAPDH Inhibition with a Natural Product.
    Liberti MV; Dai Z; Wardell SE; Baccile JA; Liu X; Gao X; Baldi R; Mehrmohamadi M; Johnson MO; Madhukar NS; Shestov AA; Chio IIC; Elemento O; Rathmell JC; Schroeder FC; McDonnell DP; Locasale JW
    Cell Metab; 2017 Oct; 26(4):648-659.e8. PubMed ID: 28918937
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Improvement in storage quality of postharvest tomato fruits by nitroxyl liposomes treatment.
    Liu Y; Sun Y; Ye M; Zhu L; Zhang L; Zhu S
    Food Chem; 2021 Oct; 359():129933. PubMed ID: 33951606
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Luteolin inhibits progestin-dependent angiogenesis, stem cell-like characteristics, and growth of human breast cancer xenografts.
    Cook MT; Liang Y; Besch-Williford C; Goyette S; Mafuvadze B; Hyder SM
    Springerplus; 2015; 4():444. PubMed ID: 26312209
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Antiangiogenic activity of 2-deoxy-D-glucose.
    Merchan JR; Kovács K; Railsback JW; Kurtoglu M; Jing Y; Piña Y; Gao N; Murray TG; Lehrman MA; Lampidis TJ
    PLoS One; 2010 Oct; 5(10):e13699. PubMed ID: 21060881
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Glyceraldehyde-3-phosphate dehydrogenase as a surface associated antigen on human breast cancer cell lines MACL-1 and MGSO-3.
    Correa CR; Bertollo CM; Zouain CS; Goes AM
    Oncol Rep; 2010 Sep; 24(3):677-85. PubMed ID: 20664973
    [TBL] [Abstract][Full Text] [Related]  

  • 78. C6-ceramide nanoliposomes target the Warburg effect in chronic lymphocytic leukemia.
    Ryland LK; Doshi UA; Shanmugavelandy SS; Fox TE; Aliaga C; Broeg K; Baab KT; Young M; Khan O; Haakenson JK; Jarbadan NR; Liao J; Wang HG; Feith DJ; Loughran TP; Liu X; Kester M
    PLoS One; 2013; 8(12):e84648. PubMed ID: 24367685
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel insight into the role of GAPDH playing in tumor.
    Guo C; Liu S; Sun MZ
    Clin Transl Oncol; 2013 Mar; 15(3):167-72. PubMed ID: 22911551
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Correlation of tumor growth suppression and methionine aminopetidase-2 activity blockade using an orally active inhibitor.
    Wang J; Tucker LA; Stavropoulos J; Zhang Q; Wang YC; Bukofzer G; Niquette A; Meulbroek JA; Barnes DM; Shen J; Bouska J; Donawho C; Sheppard GS; Bell RL
    Proc Natl Acad Sci U S A; 2008 Feb; 105(6):1838-43. PubMed ID: 18252827
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.