BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 18076089)

  • 1. A systemic approach toward optimization of the hot embossing of poly-L-lactic acid for biomedical applications.
    Belligundu S; Shiakolas PS; Pandey A; Aswath PB
    J Biomed Mater Res B Appl Biomater; 2008 May; 85(2):469-77. PubMed ID: 18076089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technique paper for wet-spinning poly(L-lactic acid) and poly(DL-lactide-co-glycolide) monofilament fibers.
    Nelson KD; Romero A; Waggoner P; Crow B; Borneman A; Smith GM
    Tissue Eng; 2003 Dec; 9(6):1323-30. PubMed ID: 14670119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and thermal property characterization of poly-l-lactide (PLLA) scaffold developed using pressure-controllable green foaming technology.
    Sheng SJ; Hu X; Wang F; Ma QY; Gu MF
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():612-622. PubMed ID: 25686990
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications.
    Li WJ; Cooper JA; Mauck RL; Tuan RS
    Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and mechanical characteristics of poly(L-lactic acid) nanocomposite scaffold.
    Lee JH; Park TG; Park HS; Lee DS; Lee YK; Yoon SC; Nam JD
    Biomaterials; 2003 Jul; 24(16):2773-8. PubMed ID: 12711524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical properties and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering.
    Zhang Q; Mochalin VN; Neitzel I; Hazeli K; Niu J; Kontsos A; Zhou JG; Lelkes PI; Gogotsi Y
    Biomaterials; 2012 Jul; 33(20):5067-75. PubMed ID: 22494891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indentation creep reservoirs for drug-eluting poly(L-lactic acid) scaffolds.
    Pandey A; Aswath P
    J Biomater Sci Polym Ed; 2011; 22(12):1591-606. PubMed ID: 20663280
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally produced biodegradable scaffolds for cartilage tissue engineering.
    Lee SH; Kim BS; Kim SH; Kang SW; Kim YH
    Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.
    Frydrych M; Román S; MacNeil S; Chen B
    Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Block copolymers based on poly(butylene adipate) and poly(L-lactic acid) for biomedical applications: synthesis, structure and thermodynamical studies.
    Karava V; Siamidi A; Vlachou M; Christodoulou E; Zamboulis A; Bikiaris DN; Kyritsis A; Klonos PA
    Soft Matter; 2021 Mar; 17(9):2439-2453. PubMed ID: 33491719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the Optical Activity of Poly(L-Lactic Acid) (PLLA) Oligomers and Polymer: Detection of Multiple Cotton Effect on Thin PLLA Solid Film Loaded with Two Dyes.
    Cataldo F
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture of porous biodegradable polymer conduits by an extrusion process for guided tissue regeneration.
    Widmer MS; Gupta PK; Lu L; Meszlenyi RK; Evans GR; Brandt K; Savel T; Gurlek A; Patrick CW; Mikos AG
    Biomaterials; 1998 Nov; 19(21):1945-55. PubMed ID: 9863528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.
    Gao C; Yang B; Hu H; Liu J; Shuai C; Peng S
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):3802-10. PubMed ID: 23910280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of protein molecular weight on the intrinsic material properties and release kinetics of wet spun polymeric microfiber delivery systems.
    Lavin DM; Zhang L; Furtado S; Hopkins RA; Mathiowitz E
    Acta Biomater; 2013 Jan; 9(1):4569-78. PubMed ID: 22902813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined strategy to reduce restenosis for vascular tissue engineering applications.
    Patel HJ; Su SH; Patterson C; Nguyen KT
    Biotechnol Prog; 2006; 22(1):38-44. PubMed ID: 16454490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and characterization of conductive poly (3,4-ethylenedioxythiophene) doped with hyaluronic acid/poly (l-lactic acid) composite film for biomedical application.
    Wang S; Guan S; Wang J; Liu H; Liu T; Ma X; Cui Z
    J Biosci Bioeng; 2017 Jan; 123(1):116-125. PubMed ID: 27498308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of poly(lactic acid)-poly(ethylene oxide) electrospun membranes with controlled micro to nanofiber sizes.
    Ribeiro C; Sencadas V; Caparros C; Gómez Ribelles JL; Lanceros-Méndez S
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6746-53. PubMed ID: 22962817
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of poly (ethylenimine) modified poly (l-lactic acid) nanofibrous scaffolds.
    Guo R; Chen S; Xiao X
    J Biomater Sci Polym Ed; 2019 Nov; 30(16):1523-1541. PubMed ID: 31359828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.