BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 18076197)

  • 1. Polymeric brushes as functional templates for immobilizing ribonuclease A: study of binding kinetics and activity.
    Cullen SP; Liu X; Mandel IC; Himpsel FJ; Gopalan P
    Langmuir; 2008 Feb; 24(3):913-20. PubMed ID: 18076197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-anchored poly(2-vinyl-4,4-dimethyl azlactone) brushes as templates for enzyme immobilization.
    Cullen SP; Mandel IC; Gopalan P
    Langmuir; 2008 Dec; 24(23):13701-9. PubMed ID: 18956849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-capacity binding of proteins by poly(acrylic acid) brushes and their derivatives.
    Dai J; Bao Z; Sun L; Hong SU; Baker GL; Bruening ML
    Langmuir; 2006 Apr; 22(9):4274-81. PubMed ID: 16618175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme Immobilization in Polyelectrolyte Brushes: High Loading and Enhanced Activity Compared to Monolayers.
    Ferrand-Drake Del Castillo G; Koenig M; Müller M; Eichhorn KJ; Stamm M; Uhlmann P; Dahlin A
    Langmuir; 2019 Mar; 35(9):3479-3489. PubMed ID: 30742441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imaging the binding ability of proteins immobilized on surfaces with different orientations by using liquid crystals.
    Luk YY; Tingey ML; Dickson KA; Raines RT; Abbott NL
    J Am Chem Soc; 2004 Jul; 126(29):9024-32. PubMed ID: 15264835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial surfaces based on polymer brushes: investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity.
    Gao G; Yu K; Kindrachuk J; Brooks DE; Hancock RE; Kizhakkedathu JN
    Biomacromolecules; 2011 Oct; 12(10):3715-27. PubMed ID: 21902171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilization of enzymes on 2-hydroxyethyl methacrylate and glycidyl methacrylate copolymer brushes.
    Ren T; Mao Z; Moya SE; Gao C
    Chem Asian J; 2014 Aug; 9(8):2132-9. PubMed ID: 24962678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.
    Dong R; Krishnan S; Baird BA; Lindau M; Ober CK
    Biomacromolecules; 2007 Oct; 8(10):3082-92. PubMed ID: 17880179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of protein immobilization at silver surfaces by near edge X-ray absorption fine structure spectroscopy.
    Liu X; Jang CH; Zheng F; Jürgensen A; Denlinger JD; Dickson KA; Raines RT; Abbott NL; Himpsel FJ
    Langmuir; 2006 Aug; 22(18):7719-25. PubMed ID: 16922555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme immobilization on protein-resistant PNIPAAm brushes: impact of biotin linker length on enzyme amount and catalytic activity.
    Rosenthal A; Rauch S; Eichhorn KJ; Stamm M; Uhlmann P
    Colloids Surf B Biointerfaces; 2018 Nov; 171():351-357. PubMed ID: 30056296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NHS-ester functionalized poly(PEGMA) brushes on silicon surface for covalent protein immobilization.
    Yao Y; Ma YZ; Qin M; Ma XJ; Wang C; Feng XZ
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):233-9. PubMed ID: 18675539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of α-amylase onto poly(glycidyl methacrylate) grafted electrospun fibers by ATRP.
    Oktay B; Demir S; Kayaman-Apohan N
    Mater Sci Eng C Mater Biol Appl; 2015 May; 50():386-93. PubMed ID: 25746284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chemical glycosylation of RNase A on the protein stability and surface histidines accessibility in immobilized metal ion affinity electrophoresis (IMAGE) system.
    Baek WO; Vijayalakshmi MA
    Biochim Biophys Acta; 1997 Oct; 1336(3):394-402. PubMed ID: 9367166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-grafted poly(acrylic acid) brushes as a precursor layer for biosensing applications: effect of graft density and swellability on the detection efficiency.
    Akkahat P; Mekboonsonglarp W; Kiatkamjornwong S; Hoven VP
    Langmuir; 2012 Mar; 28(11):5302-11. PubMed ID: 22329634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.
    Feng Q; Hou D; Zhao Y; Xu T; Menkhaus TJ; Fong H
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20958-67. PubMed ID: 25396286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring conformational changes of immobilized RNase A and lysozyme in reductive unfolding by surface plasmon resonance.
    Chen LY
    Anal Chim Acta; 2009 Jan; 631(1):96-101. PubMed ID: 19046685
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of RNase A immobilized on magnetic Poly(2-hydroxyethyl methacrylate) microspheres.
    Horák D; Rittich B; Safár J; Spanová A; Lenfeld J; Benes MJ
    Biotechnol Prog; 2001; 17(3):447-52. PubMed ID: 11386864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method.
    Iwata R; Satoh R; Iwasaki Y; Akiyoshi K
    Colloids Surf B Biointerfaces; 2008 Apr; 62(2):288-98. PubMed ID: 18055186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of surface properties using fluorinated polymer brushes produced by surface-initiated controlled radical polymerization.
    Andruzzi L; Hexemer A; Li X; Ober CK; Kramer EJ; Galli G; Chiellini E; Fischer DA
    Langmuir; 2004 Nov; 20(24):10498-506. PubMed ID: 15544378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature-induced unfolding of ribonuclease A embedded in spherical polyelectrolyte brushes.
    Wittemann A; Ballauff M
    Macromol Biosci; 2005 Jan; 5(1):13-20. PubMed ID: 15633159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.