These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

446 related articles for article (PubMed ID: 18076326)

  • 1. Specificity in two-component signal transduction pathways.
    Laub MT; Goulian M
    Annu Rev Genet; 2007; 41():121-45. PubMed ID: 18076326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphotransfer profiling: systematic mapping of two-component signal transduction pathways and phosphorelays.
    Laub MT; Biondi EG; Skerker JM
    Methods Enzymol; 2007; 423():531-48. PubMed ID: 17609150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing a synthetic signal transduction system in plants.
    Morey KJ; Antunes MS; Albrecht KD; Bowen TA; Troupe JF; Havens KL; Medford JI
    Methods Enzymol; 2011; 497():581-602. PubMed ID: 21601104
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into eukaryotic multistep phosphorelay signal transduction revealed by the crystal structure of Ypd1p from Saccharomyces cerevisiae.
    Song HK; Lee JY; Lee MG; Moon J; Min K; Yang JK; Suh SW
    J Mol Biol; 1999 Nov; 293(4):753-61. PubMed ID: 10543964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction.
    Casino P; Rubio V; Marina A
    Cell; 2009 Oct; 139(2):325-36. PubMed ID: 19800110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution structure of the Escherichia coli YojN histidine-phosphotransferase domain and its interaction with cognate phosphoryl receiver domains.
    Rogov VV; Bernhard F; Löhr F; Dötsch V
    J Mol Biol; 2004 Oct; 343(4):1035-48. PubMed ID: 15476819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atypical modes of bacterial histidine kinase signaling.
    Willett JW; Crosson S
    Mol Microbiol; 2017 Jan; 103(2):197-202. PubMed ID: 27618209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic dissection and trajectory-scanning mutagenesis of the molecular interface that ensures specificity of two-component signaling pathways.
    Capra EJ; Perchuk BS; Lubin EA; Ashenberg O; Skerker JM; Laub MT
    PLoS Genet; 2010 Nov; 6(11):e1001220. PubMed ID: 21124821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions.
    Hõrak R; Ilves H; Pruunsild P; Kuljus M; Kivisaar M
    Mol Microbiol; 2004 Nov; 54(3):795-807. PubMed ID: 15491368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of sensor domains from the TMAO-responsive histidine kinase receptor TorS.
    Moore JO; Hendrickson WA
    Structure; 2009 Sep; 17(9):1195-204. PubMed ID: 19748340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sporulation phosphorelay proteins and their complexes: crystallographic characterization.
    Varughese KI; Zhao H; Veldore VH; Zapf J
    Methods Enzymol; 2007; 422():102-22. PubMed ID: 17628136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics.
    Qian W; Han ZJ; He C
    Mol Plant Microbe Interact; 2008 Feb; 21(2):151-61. PubMed ID: 18184059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into Rcs phosphotransfer: the newly identified RcsD-ABL domain enhances interaction with the response regulator RcsB.
    Schmöe K; Rogov VV; Rogova NY; Löhr F; Güntert P; Bernhard F; Dötsch V
    Structure; 2011 Apr; 19(4):577-87. PubMed ID: 21481780
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-talk and specificity in two-component signal transduction pathways.
    Agrawal R; Sahoo BK; Saini DK
    Future Microbiol; 2016 May; 11():685-97. PubMed ID: 27159035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana.
    Pekárová B; Klumpler T; Třísková O; Horák J; Jansen S; Dopitová R; Borkovcová P; Papoušková V; Nejedlá E; Sklenář V; Marek J; Zídek L; Hejátko J; Janda L
    Plant J; 2011 Sep; 67(5):827-39. PubMed ID: 21569135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular recognition in signal transduction: the interaction surfaces of the Spo0F response regulator with its cognate phosphorelay proteins revealed by alanine scanning mutagenesis.
    Tzeng YL; Hoch JA
    J Mol Biol; 1997 Sep; 272(2):200-12. PubMed ID: 9299348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determinants of specificity in two-component signal transduction.
    Podgornaia AI; Laub MT
    Curr Opin Microbiol; 2013 Apr; 16(2):156-62. PubMed ID: 23352354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of two-component signal transduction systems.
    Capra EJ; Laub MT
    Annu Rev Microbiol; 2012; 66():325-47. PubMed ID: 22746333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein phosphorylation and the regulation of cellular processes by the homologous two-component regulatory systems of bacteria.
    Ninfa AJ
    Genet Eng (N Y); 1991; 13():39-72. PubMed ID: 1369339
    [No Abstract]   [Full Text] [Related]  

  • 20. Phosphorelay through the bifunctional phosphotransferase PhyT controls the general stress response in an alphaproteobacterium.
    Gottschlich L; Bortfeld-Miller M; Gäbelein C; Dintner S; Vorholt JA
    PLoS Genet; 2018 Apr; 14(4):e1007294. PubMed ID: 29652885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.