BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 18076380)

  • 1. Lamellipodin proline rich peptides associated with native plasma butyrylcholinesterase tetramers.
    Li H; Schopfer LM; Masson P; Lockridge O
    Biochem J; 2008 Apr; 411(2):425-32. PubMed ID: 18076380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wild-type and A328W mutant human butyrylcholinesterase tetramers expressed in Chinese hamster ovary cells have a 16-hour half-life in the circulation and protect mice from cocaine toxicity.
    Duysen EG; Bartels CF; Lockridge O
    J Pharmacol Exp Ther; 2002 Aug; 302(2):751-8. PubMed ID: 12130740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetramer-organizing polyproline-rich peptides differ in CHO cell-expressed and plasma-derived human butyrylcholinesterase tetramers.
    Schopfer LM; Lockridge O
    Biochim Biophys Acta; 2016 Jun; 1864(6):706-714. PubMed ID: 26947244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyproline promotes tetramerization of recombinant human butyrylcholinesterase.
    Larson MA; Lockridge O; Hinrichs SH
    Biochem J; 2014 Sep; 462(2):329-35. PubMed ID: 24916051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proline-Rich Chaperones Are Compared Computationally and Experimentally for Their Abilities to Facilitate Recombinant Butyrylcholinesterase Tetramerization in CHO Cells.
    Wang Q; Chen CH; Chung CY; Priola J; Chu JH; Tang J; Ulmschneider MB; Betenbaugh MJ
    Biotechnol J; 2018 Mar; 13(3):e1700479. PubMed ID: 29024569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Respective roles of the catalytic domains and C-terminal tail peptides in the oligomerization and secretory trafficking of human acetylcholinesterase and butyrylcholinesterase.
    Liang D; Blouet JP; Borrega F; Bon S; Massoulié J
    FEBS J; 2009 Jan; 276(1):94-108. PubMed ID: 19019080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The PRiMA-linked cholinesterase tetramers are assembled from homodimers: hybrid molecules composed of acetylcholinesterase and butyrylcholinesterase dimers are up-regulated during development of chicken brain.
    Chen VP; Xie HQ; Chan WKB; Leung KW; Chan GKL; Choi RCY; Bon S; Massoulié J; Tsim KWK
    J Biol Chem; 2010 Aug; 285(35):27265-27278. PubMed ID: 20566626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved aromatic residues of the C-terminus of human butyrylcholinesterase mediate the association of tetramers.
    Altamirano CV; Lockridge O
    Biochemistry; 1999 Oct; 38(40):13414-22. PubMed ID: 10529218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origin of polyproline-rich peptides in human butyrylcholinesterase tetramers.
    Peng H; Schopfer LM; Lockridge O
    Chem Biol Interact; 2016 Nov; 259(Pt B):63-69. PubMed ID: 26876904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of polyethylene glycol modification on the circulatory stability and immunogenicity of recombinant human butyrylcholinesterase.
    Chilukuri N; Sun W; Naik RS; Parikh K; Tang L; Doctor BP; Saxena A
    Chem Biol Interact; 2008 Sep; 175(1-3):255-60. PubMed ID: 18603232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetramerization domain of human butyrylcholinesterase is at the C-terminus.
    Blong RM; Bedows E; Lockridge O
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):747-57. PubMed ID: 9581552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyethylene glycosylation prolongs the circulatory stability of recombinant human butyrylcholinesterase.
    Chilukuri N; Parikh K; Sun W; Naik R; Tipparaju P; Doctor BP; Saxena A
    Chem Biol Interact; 2005 Dec; 157-158():115-21. PubMed ID: 16253215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C5 Variant of the Butyrylcholinesterase Tetramer Includes a Noncovalently Bound 60 kDa Lamellipodin Fragment.
    Schopfer LM; Delacour H; Masson P; Leroy J; Krejci E; Lockridge O
    Molecules; 2017 Jun; 22(7):. PubMed ID: 28661448
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proline-rich tetramerization peptides in equine serum butyrylcholinesterase.
    Biberoglu K; Schopfer LM; Tacal O; Lockridge O
    FEBS J; 2012 Oct; 279(20):3844-58. PubMed ID: 22889087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The C-terminal peptides of acetylcholinesterase: cellular trafficking, oligomerization and functional anchoring.
    Massoulié J; Bon S; Perrier N; Falasca C
    Chem Biol Interact; 2005 Dec; 157-158():3-14. PubMed ID: 16257397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The butyrylcholinesterase K-variant shows similar cellular protein turnover and quaternary interaction to the wild-type enzyme.
    Altamirano CV; Bartels CF; Lockridge O
    J Neurochem; 2000 Feb; 74(2):869-77. PubMed ID: 10646540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyproline tetramer organizing peptides in fetal bovine serum acetylcholinesterase.
    Biberoglu K; Schopfer LM; Saxena A; Tacal O; Lockridge O
    Biochim Biophys Acta; 2013 Apr; 1834(4):745-53. PubMed ID: 23352838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast affinity purification coupled with mass spectrometry for identifying organophosphate labeled plasma butyrylcholinesterase.
    Li H; Tong L; Schopfer LM; Masson P; Lockridge O
    Chem Biol Interact; 2008 Sep; 175(1-3):68-72. PubMed ID: 18586231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The origin of the molecular diversity and functional anchoring of cholinesterases.
    Massoulié J
    Neurosignals; 2002; 11(3):130-43. PubMed ID: 12138250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding of the proline-rich segment of myelin basic protein to SH3 domains: spectroscopic, microarray, and modeling studies of ligand conformation and effects of posttranslational modifications.
    Polverini E; Rangaraj G; Libich DS; Boggs JM; Harauz G
    Biochemistry; 2008 Jan; 47(1):267-82. PubMed ID: 18067320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.