BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

757 related articles for article (PubMed ID: 18076492)

  • 1. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes.
    Haddad S; Tardif GC; Tardif R
    J Toxicol Environ Health A; 2006 Dec; 69(23):2095-136. PubMed ID: 17060096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative interpretation of human biomonitoring data.
    Clewell HJ; Tan YM; Campbell JL; Andersen ME
    Toxicol Appl Pharmacol; 2008 Aug; 231(1):122-33. PubMed ID: 18589468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trichloroethylene cancer risk: simplified calculation of PBPK-based MCLs for cytotoxic end points.
    Bogen KT; Gold LS
    Regul Toxicol Pharmacol; 1997 Feb; 25(1):26-42. PubMed ID: 9056499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trichloroethylene risk assessment: a review and commentary.
    Jollow DJ; Bruckner JV; McMillan DC; Fisher JW; Hoel DG; Mohr LC
    Crit Rev Toxicol; 2009; 39(9):782-97. PubMed ID: 19852561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomonitoring equivalents: a screening approach for interpreting biomonitoring results from a public health risk perspective.
    Hays SM; Becker RA; Leung HW; Aylward LL; Pyatt DW
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):96-109. PubMed ID: 17030369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic contamination in dialysis water: trichloroethylene as a model compound.
    Poli D; Pavone L; Tansinda P; Goldoni M; Tagliavini D; David S; Mutti A; Franchini I
    Nephrol Dial Transplant; 2006 Jun; 21(6):1618-25. PubMed ID: 16490745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds.
    Pelekis M; Gephart LA; Lerman SE
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):12-20. PubMed ID: 11259175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue dosimetry expansion and cross-validation of rat and mouse physiologically based pharmacokinetic models for trichloroethylene.
    Keys DA; Bruckner JV; Muralidhara S; Fisher JW
    Toxicol Sci; 2003 Nov; 76(1):35-50. PubMed ID: 12915716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial uptake kinetics in human skin exposed to dilute aqueous trichloroethylene in vitro.
    Bogen KT; Keating GA; Meissner S; Vogel JS
    J Expo Anal Environ Epidemiol; 1998; 8(2):253-71. PubMed ID: 9577754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human health risk and exposure assessment of chromium (VI) in tap water.
    Paustenbach DJ; Finley BL; Mowat FS; Kerger BD
    J Toxicol Environ Health A; 2003 Jul; 66(14):1295-339. PubMed ID: 12851114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach.
    Chiu WA; Okino MS; Evans MV
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an updated PBPK model for trichloroethylene and metabolites in mice, and its application to discern the role of oxidative metabolism in TCE-induced hepatomegaly.
    Evans MV; Chiu WA; Okino MS; Caldwell JC
    Toxicol Appl Pharmacol; 2009 May; 236(3):329-40. PubMed ID: 19249323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Biomonitoring Equivalents to interpret human biomonitoring data in a public health risk context.
    Hays SM; Aylward LL
    J Appl Toxicol; 2009 May; 29(4):275-88. PubMed ID: 19115313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results.
    Jongeneelen FJ; Berge WF
    Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variability of environmental exposures to volatile organic compounds.
    Rappaport SM; Kupper LL
    J Expo Anal Environ Epidemiol; 2004 Jan; 14(1):92-107. PubMed ID: 14726948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic approach to estimating indoor air concentrations of chlorinated volatile organic compounds from contaminated groundwater: a case study in San Antonio, Texas.
    Johnston JE; Gibson JM
    Environ Sci Technol; 2011 Feb; 45(3):1007-13. PubMed ID: 21162557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 38.