BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 18076493)

  • 1. Uncertainties in the CIIT model for formaldehyde-induced carcinogenicity in the rat: a limited sensitivity analysis-I.
    Subramaniam RP; Crump KS; Van Landingham C; White P; Chen C; Schlosser PM
    Risk Anal; 2007 Oct; 27(5):1237-54. PubMed ID: 18076493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human respiratory tract cancer risks of inhaled formaldehyde: dose-response predictions derived from biologically-motivated computational modeling of a combined rodent and human dataset.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2004 Nov; 82(1):279-96. PubMed ID: 15254341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biologically motivated computational modeling of formaldehyde carcinogenicity in the F344 rat.
    Conolly RB; Kimbell JS; Janszen D; Schlosser PM; Kalisak D; Preston J; Miller FJ
    Toxicol Sci; 2003 Oct; 75(2):432-47. PubMed ID: 12857938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans.
    Crump KS; Chen C; Fox JF; Van Landingham C; Subramaniam R
    Ann Occup Hyg; 2008 Aug; 52(6):481-95. PubMed ID: 18628253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bayesian analysis of a rat formaldehyde DNA-protein cross-link model.
    Yang Y; Allen BC; Tan YM; Liao KH; Clewell HJ
    J Toxicol Environ Health A; 2010; 73(12):787-806. PubMed ID: 20391121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmark dose risk assessment for formaldehyde using airflow modeling and a single-compartment, DNA-protein cross-link dosimetry model to estimate human equivalent doses.
    Schlosser PM; Lilly PD; Conolly RB; Janszen DB; Kimbell JS
    Risk Anal; 2003 Jun; 23(3):473-87. PubMed ID: 12836840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacodynamics of formaldehyde: applications of a model for the arrest of DNA replication by DNA-protein cross-links.
    Heck H; Casanova M
    Toxicol Appl Pharmacol; 1999 Oct; 160(1):86-100. PubMed ID: 10502505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlation of regional and nonlinear formaldehyde-induced nasal cancer with proliferating populations of cells.
    Monticello TM; Swenberg JA; Gross EA; Leininger JR; Kimbell JS; Seilkop S; Starr TB; Gibson JE; Morgan KT
    Cancer Res; 1996 Mar; 56(5):1012-22. PubMed ID: 8640755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating additional biological phenomena into two-stage cancer models.
    Sielken RL; Bretzlaff RS; Stevenson DE
    Prog Clin Biol Res; 1994; 387():237-60. PubMed ID: 7972250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uncertainties in biologically-based modeling of formaldehyde-induced respiratory cancer risk: identification of key issues.
    Subramaniam RP; Chen C; Crump KS; Devoney D; Fox JF; Portier CJ; Schlosser PM; Thompson CM; White P
    Risk Anal; 2008 Aug; 28(4):907-23. PubMed ID: 18564991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods for assessing uncertainty in fundamental assumptions and associated models for cancer risk assessment.
    Small MJ
    Risk Anal; 2008 Oct; 28(5):1289-308. PubMed ID: 18844862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dose response for formaldehyde-induced cytotoxicity in the human respiratory tract.
    Conolly RB; Kimbell JS; Janszen DB; Miller FJ
    Regul Toxicol Pharmacol; 2002 Feb; 35(1):32-43. PubMed ID: 11846634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carcinogenicity of formaldehyde vapor: interim findings in a long-term bioassay of rats and mice.
    Swenberg J; Kerns W; Pavkov K; Mitchell R; Gralla EJ
    Dev Toxicol Environ Sci; 1980; 8():283-6. PubMed ID: 7308029
    [No Abstract]   [Full Text] [Related]  

  • 14. Update of potency factors for asbestos-related lung cancer and mesothelioma.
    Berman DW; Crump KS
    Crit Rev Toxicol; 2008; 38 Suppl 1():1-47. PubMed ID: 18671157
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Risk assessment of laboratory rats and mice chronically exposed to formaldehyde vapors.
    Brown KG
    Risk Anal; 1985 Sep; 5(3):171-80. PubMed ID: 3916550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhaled formaldehyde: evaluation of sensory irritation in relation to carcinogenicity.
    Arts JH; Rennen MA; de Heer C
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):144-60. PubMed ID: 16413643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An adjustment factor for mode-of-action uncertainty with dual-mode carcinogens: the case of naphthalene-induced nasal tumors in rats.
    Bogen KT
    Risk Anal; 2008 Aug; 28(4):1033-51. PubMed ID: 18564993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Updating the biologically based dose-response model for the nasal carcinogenicity of inhaled formaldehyde in the F344 rat.
    Conolly RB; Schroeter J; Kimbell JS; Clewell H; Andersen ME; Gentry PR
    Toxicol Sci; 2023 May; 193(1):1-17. PubMed ID: 36912747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of mechanistic data in dose-response modeling.
    Starr TB
    Basic Life Sci; 1985; 33():101-24. PubMed ID: 4040362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptomic analysis of F344 rat nasal epithelium suggests that the lack of carcinogenic response to glutaraldehyde is due to its greater toxicity compared to formaldehyde.
    Hester SD; Barry WT; Zou F; Wolf DC
    Toxicol Pathol; 2005; 33(4):415-24. PubMed ID: 16036858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.