These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18077117)

  • 1. Effects of exposing C57BL/6J mice to high- and low-frequency augmented acoustic environments: auditory brainstem response thresholds, cytocochleograms, anterior cochlear nucleus morphology and the role of gonadal hormones.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2008 Jan; 235(1-2):60-71. PubMed ID: 18077117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of sex, gonadal hormones, and augmented acoustic environments on sensorineural hearing loss and the central auditory system: insights from research on C57BL/6J mice.
    Willott JF
    Hear Res; 2009 Jun; 252(1-2):89-99. PubMed ID: 19114100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of exposing gonadectomized and intact C57BL/6J mice to a high-frequency augmented acoustic environment: Auditory brainstem response thresholds and cytocochleograms.
    Willott JF; VandenBosche J; Shimizu T; Ding DL; Salvi R
    Hear Res; 2006 Nov; 221(1-2):73-81. PubMed ID: 16973316
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of prolonged exposure to an augmented acoustic environment on the auditory system of middle-aged C57BL/6J mice: cochlear and central histology and sex differences.
    Willott JF; Bross L
    J Comp Neurol; 2004 May; 472(3):358-70. PubMed ID: 15065130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ameliorative effects of exposing DBA/2J mice to an augmented acoustic environment on histological changes in the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bross LS; McFadden S
    J Assoc Res Otolaryngol; 2005 Sep; 6(3):234-43. PubMed ID: 15983726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of exposing DBA/2J mice to a high-frequency augmented acoustic environment on the cochlea and anteroventral cochlear nucleus.
    Willott JF; Bosch JV; Shimizu T; Ding DL
    Hear Res; 2006; 216-217():138-45. PubMed ID: 16497456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of a high-frequency augmented acoustic environment on parvalbumin immunolabeling in the anteroventral cochlear nucleus of DBA/2J and C57BL/6J mice.
    Willott JF; Vandenbosche J; Shimizu T
    Hear Res; 2010 Mar; 261(1-2):36-41. PubMed ID: 20060461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BALB/c mouse as an animal model for progressive sensorineural hearing loss.
    Willott JF; Turner JG; Carlson S; Ding D; Seegers Bross L; Falls WA
    Hear Res; 1998 Jan; 115(1-2):162-74. PubMed ID: 9472745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trauma-specific insults to the cochlear nucleus in the rat.
    Sekiya T; Viberg A; Kojima K; Sakamoto T; Nakagawa T; Ito J; Canlon B
    J Neurosci Res; 2012 Oct; 90(10):1924-31. PubMed ID: 22715005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age-related changes in auditory nerve-inner hair cell connections, hair cell numbers, auditory brain stem response and gap detection in UM-HET4 mice.
    Altschuler RA; Dolan DF; Halsey K; Kanicki A; Deng N; Martin C; Eberle J; Kohrman DC; Miller RA; Schacht J
    Neuroscience; 2015 Apr; 292():22-33. PubMed ID: 25665752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss.
    Vlajkovic SM; Ambepitiya K; Barclay M; Boison D; Housley GD; Thorne PR
    Hear Res; 2017 Mar; 345():43-51. PubMed ID: 28034618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acoustic experience alters the aged auditory system.
    Turner JG; Parrish JL; Zuiderveld L; Darr S; Hughes LF; Caspary DM; Idrezbegovic E; Canlon B
    Ear Hear; 2013; 34(2):151-9. PubMed ID: 23086424
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paired measurements of cochlear function and hair cell count in Dutch-belted rabbits with noise-induced hearing loss.
    Haragopal H; Dorkoski R; Johnson HM; Berryman MA; Tanda S; Day ML
    Hear Res; 2020 Jan; 385():107845. PubMed ID: 31760262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exposure to an augmented acoustic environment alters auditory function in hearing-impaired DBA/2J mice.
    Turner JG; Willott JF
    Hear Res; 1998 Apr; 118(1-2):101-13. PubMed ID: 9606065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degeneration of axons in the brainstem of the chinchilla after auditory overstimulation.
    Kim J; Morest DK; Bohne BA
    Hear Res; 1997 Jan; 103(1-2):169-91. PubMed ID: 9007583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protective effect of conditioning on noise-induced hearing loss is frequency-dependent.
    Pourbakht A; Imani A
    Acta Med Iran; 2012; 50(10):664-9. PubMed ID: 23275293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perinatal thiamine deficiency causes cochlear innervation abnormalities in mice.
    Maison SF; Yin Y; Liberman LD; Liberman MC
    Hear Res; 2016 May; 335():94-104. PubMed ID: 26944177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective hair cell ablation and noise exposure lead to different patterns of changes in the cochlea and the cochlear nucleus.
    Kurioka T; Lee MY; Heeringa AN; Beyer LA; Swiderski DL; Kanicki AC; Kabara LL; Dolan DF; Shore SE; Raphael Y
    Neuroscience; 2016 Sep; 332():242-57. PubMed ID: 27403879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.