These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 18077246)
1. Growth model for arbuscular mycorrhizal fungi. Schnepf A; Roose T; Schweiger P J R Soc Interface; 2008 Jul; 5(24):773-84. PubMed ID: 18077246 [TBL] [Abstract][Full Text] [Related]
2. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. Frey B; Schüepp H New Phytol; 1993 Jun; 124(2):221-230. PubMed ID: 33874357 [TBL] [Abstract][Full Text] [Related]
3. Complementarity in nutrient foraging strategies of absorptive fine roots and arbuscular mycorrhizal fungi across 14 coexisting subtropical tree species. Liu B; Li H; Zhu B; Koide RT; Eissenstat DM; Guo D New Phytol; 2015 Oct; 208(1):125-36. PubMed ID: 25925733 [TBL] [Abstract][Full Text] [Related]
4. Scutellospora calospora (Nicol. & Gerd.) Walker & Sanders associated with subterranean clover produces non-infective hyphae during sporulation. Pearson JN; Schweiger P New Phytol; 1994 Aug; 127(4):697-701. PubMed ID: 33874391 [TBL] [Abstract][Full Text] [Related]
5. Modelling the contribution of arbuscular mycorrhizal fungi to plant phosphate uptake. Schnepf A; Roose T New Phytol; 2006; 171(3):669-82. PubMed ID: 16866967 [TBL] [Abstract][Full Text] [Related]
6. Infectivity of arbuscular mycorrhizal fungi after wetting and drying. Braunberger PG; Abbott LK; Robson AD New Phytol; 1996 Dec; 134(4):673-684. PubMed ID: 33863200 [TBL] [Abstract][Full Text] [Related]
7. Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. de Boulois HD; Voets L; Delvaux B; Jakobsen I; Declerck S Environ Microbiol; 2006 Nov; 8(11):1926-34. PubMed ID: 17014492 [TBL] [Abstract][Full Text] [Related]
8. Trichoderma harzianum might impact phosphorus transport by arbuscular mycorrhizal fungi. De Jaeger N; de la Providencia IE; de Boulois HD; Declerck S FEMS Microbiol Ecol; 2011 Sep; 77(3):558-67. PubMed ID: 21609342 [TBL] [Abstract][Full Text] [Related]
9. Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. Olsson PA; Rahm J; Aliasgharzad N FEMS Microbiol Ecol; 2010 Apr; 72(1):125-31. PubMed ID: 20459516 [TBL] [Abstract][Full Text] [Related]
10. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chen BD; Li XL; Tao HQ; Christie P; Wong MH Chemosphere; 2003 Feb; 50(6):839-46. PubMed ID: 12688500 [TBL] [Abstract][Full Text] [Related]
11. Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Juniper S; Abbott LK Mycorrhiza; 2006 Jul; 16(5):371-9. PubMed ID: 16525784 [TBL] [Abstract][Full Text] [Related]
12. Phosphorus and carbon availability regulate structural composition and complexity of AM fungal mycelium. Olsson O; Olsson PA; Hammer EC Mycorrhiza; 2014 Aug; 24(6):443-51. PubMed ID: 24435931 [TBL] [Abstract][Full Text] [Related]
13. Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Declerck S; Dupré de Boulois H; Bivort C; Delvaux B Environ Microbiol; 2003 Jun; 5(6):510-6. PubMed ID: 12755718 [TBL] [Abstract][Full Text] [Related]
14. L-System model for the growth of arbuscular mycorrhizal fungi, both within and outside of their host roots. Schnepf A; Leitner D; Schweiger PF; Scholl P; Jansa J J R Soc Interface; 2016 Apr; 13(117):. PubMed ID: 27097653 [TBL] [Abstract][Full Text] [Related]
15. The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi. Nagahashi G; Douds DD Fungal Biol; 2011; 115(4-5):351-8. PubMed ID: 21530917 [TBL] [Abstract][Full Text] [Related]
16. Different levels of hyphal self-incompatibility modulate interconnectedness of mycorrhizal networks in three arbuscular mycorrhizal fungi within the Glomeraceae. Pepe A; Giovannetti M; Sbrana C Mycorrhiza; 2016 May; 26(4):325-32. PubMed ID: 26630971 [TBL] [Abstract][Full Text] [Related]
17. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters. Sawers RJ; Svane SF; Quan C; Grønlund M; Wozniak B; Gebreselassie MN; González-Muñoz E; Chávez Montes RA; Baxter I; Goudet J; Jakobsen I; Paszkowski U New Phytol; 2017 Apr; 214(2):632-643. PubMed ID: 28098948 [TBL] [Abstract][Full Text] [Related]
18. Vegetative compatibility and anastomosis formation within and among individual germlings of tropical isolates of arbuscular mycorrhizal fungi (Glomeromycota). de Novais CB; Sbrana C; Saggin Júnior OJ; Siqueira JO; Giovannetti M Mycorrhiza; 2013 May; 23(4):325-31. PubMed ID: 23314797 [TBL] [Abstract][Full Text] [Related]
19. [Influence of soil factors on species diversity of arbuscular mycorrhizal (AM) fungi in Stipa steppe of Tibet Plateau]. Peng YL; Yang MN; Cai XB Ying Yong Sheng Tai Xue Bao; 2010 May; 21(5):1258-63. PubMed ID: 20707110 [TBL] [Abstract][Full Text] [Related]
20. Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Gryndler M; Hršelová H; Cajthaml T; Havránková M; Řezáčová V; Gryndlerová H; Larsen J Mycorrhiza; 2009 Apr; 19(4):255-266. PubMed ID: 19104847 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]