These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 18077327)

  • 21. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy.
    Subach FV; Patterson GH; Manley S; Gillette JM; Lippincott-Schwartz J; Verkhusha VV
    Nat Methods; 2009 Feb; 6(2):153-9. PubMed ID: 19169259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photocontrollable fluorescent proteins for superresolution imaging.
    Shcherbakova DM; Sengupta P; Lippincott-Schwartz J; Verkhusha VV
    Annu Rev Biophys; 2014; 43():303-29. PubMed ID: 24895855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speckle microscopy: when less is more.
    Keating TJ; Borisy GG
    Curr Biol; 2000 Jan; 10(1):R22-4. PubMed ID: 10660289
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transfection of genetically encoded photoswitchable probes for STORM imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):537-9. PubMed ID: 23734026
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superresolution imaging of biological nanostructures by spectral precision distance microscopy.
    Cremer C; Kaufmann R; Gunkel M; Pres S; Weiland Y; Müller P; Ruckelshausen T; Lemmer P; Geiger F; Degenhard S; Wege C; Lemmermann NA; Holtappels R; Strickfaden H; Hausmann M
    Biotechnol J; 2011 Sep; 6(9):1037-51. PubMed ID: 21910256
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale Imaging of RNA-Protein Interactions with a Photoactivatable Trimolecular Fluorescence Complementation System.
    Chen M; Li S; Li W; Zhang ZP; Zhang X; Zhang XE; Ge F; Cui Z
    ACS Chem Biol; 2021 Jun; 16(6):1003-1010. PubMed ID: 34009928
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A simple method for GFP- and RFP-based dual color single-molecule localization microscopy.
    Platonova E; Winterflood CM; Ewers H
    ACS Chem Biol; 2015 Jun; 10(6):1411-6. PubMed ID: 25806422
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual color localization microscopy of cellular nanostructures.
    Gunkel M; Erdel F; Rippe K; Lemmer P; Kaufmann R; Hörmann C; Amberger R; Cremer C
    Biotechnol J; 2009 Jun; 4(6):927-38. PubMed ID: 19548231
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Live imaging fluorescent proteins in early mouse embryos.
    Xenopoulos P; Nowotschin S; Hadjantonakis AK
    Methods Enzymol; 2012; 506():361-89. PubMed ID: 22341233
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multicolor BiFC analysis of competition among G protein beta and gamma subunit interactions.
    Hynes TR; Yost E; Mervine S; Berlot CH
    Methods; 2008 Jul; 45(3):207-13. PubMed ID: 18586104
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of PAmKate as a Red Photoactivatable Fluorescent Protein for Cryogenic Super-Resolution Imaging.
    Dahlberg PD; Sartor AM; Wang J; Saurabh S; Shapiro L; Moerner WE
    J Am Chem Soc; 2018 Oct; 140(39):12310-12313. PubMed ID: 30222332
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of fast dynamic processes in living cells: high-resolution and high-speed dual-color imaging combined with automated image analysis.
    Rustom A; Gerlich D; Rudolf R; Heinemann C; Eils R; Gerdes HH
    Biotechniques; 2000 Apr; 28(4):722-8, 730. PubMed ID: 10769751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of fluorescent-protein tagging to determine the subcellular localization of mycoplasma pneumoniae proteins encoded by the cytadherence regulatory locus.
    Kenri T; Seto S; Horino A; Sasaki Y; Sasaki T; Miyata M
    J Bacteriol; 2004 Oct; 186(20):6944-55. PubMed ID: 15466048
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Counting protein molecules using quantitative fluorescence microscopy.
    Coffman VC; Wu JQ
    Trends Biochem Sci; 2012 Nov; 37(11):499-506. PubMed ID: 22948030
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization and development of photoactivatable fluorescent proteins for single-molecule-based superresolution imaging.
    Wang S; Moffitt JR; Dempsey GT; Xie XS; Zhuang X
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8452-7. PubMed ID: 24912163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A new configuration of the Zeiss LSM 510 for simultaneous optical separation of green and red fluorescent protein pairs.
    Anderson KI; Sanderson J; Gerwig S; Peychl J
    Cytometry A; 2006 Aug; 69(8):920-9. PubMed ID: 16969813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Smart fluorescent proteins: innovation for barrier-free superresolution imaging in living cells.
    Tiwari DK; Nagai T
    Dev Growth Differ; 2013 May; 55(4):491-507. PubMed ID: 23635320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Imaging individual green fluorescent proteins.
    Pierce DW; Hom-Booher N; Vale RD
    Nature; 1997 Jul; 388(6640):338. PubMed ID: 9237750
    [No Abstract]   [Full Text] [Related]  

  • 39. Quantitative assessment of fluorescent proteins.
    Cranfill PJ; Sell BR; Baird MA; Allen JR; Lavagnino Z; de Gruiter HM; Kremers GJ; Davidson MW; Ustione A; Piston DW
    Nat Methods; 2016 Jul; 13(7):557-62. PubMed ID: 27240257
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Approaches toward super-resolution fluorescence imaging of mitochondrial proteins using PALM.
    Brown TA; Fetter RD; Tkachuk AN; Clayton DA
    Methods; 2010 Aug; 51(4):458-63. PubMed ID: 20060907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.