These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18077356)

  • 1. Sequence of late molecular events in the activation of rhodopsin.
    Knierim B; Hofmann KP; Ernst OP; Hubbell WL
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20290-5. PubMed ID: 18077356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of rhodopsin-transducin interaction: a mutant rhodopsin photoproduct with a protonated Schiff base activates transducin.
    Zvyaga TA; Fahmy K; Sakmar TP
    Biochemistry; 1994 Aug; 33(32):9753-61. PubMed ID: 8068654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring the conformational changes of photoactivated rhodopsin from microseconds to seconds by transient fluorescence spectroscopy.
    Hoersch D; Otto H; Wallat I; Heyn MP
    Biochemistry; 2008 Nov; 47(44):11518-27. PubMed ID: 18847221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin and 9-demethyl-retinal analog: effect of a partial agonist on displacement of transmembrane helix 6 in class A G protein-coupled receptors.
    Knierim B; Hofmann KP; Gärtner W; Hubbell WL; Ernst OP
    J Biol Chem; 2008 Feb; 283(8):4967-74. PubMed ID: 18063586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved Tyr223(5.58) plays different roles in the activation and G-protein interaction of rhodopsin.
    Elgeti M; Kazmin R; Heck M; Morizumi T; Ritter E; Scheerer P; Ernst OP; Siebert F; Hofmann KP; Bartl FJ
    J Am Chem Soc; 2011 May; 133(18):7159-65. PubMed ID: 21506561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deactivation and proton transfer in light-induced metarhodopsin II/metarhodopsin III conversion: a time-resolved fourier transform infrared spectroscopic study.
    Ritter E; Elgeti M; Hofmann KP; Bartl FJ
    J Biol Chem; 2007 Apr; 282(14):10720-30. PubMed ID: 17287211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of the light-induced proton translocation associated with the pH-dependent formation of the metarhodopsin I/II equilibrium of bovine rhodopsin.
    Dickopf S; Mielke T; Heyn MP
    Biochemistry; 1998 Dec; 37(48):16888-97. PubMed ID: 9836581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton movement and photointermediate kinetics in rhodopsin mutants.
    Lewis JW; Szundi I; Kazmi MA; Sakmar TP; Kliger DS
    Biochemistry; 2006 May; 45(17):5430-9. PubMed ID: 16634624
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches.
    Meyer CK; Bohme M; Ockenfels A; Gartner W; Hofmann KP; Ernst OP
    J Biol Chem; 2000 Jun; 275(26):19713-8. PubMed ID: 10770924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Movement of the retinylidene Schiff base counterion in rhodopsin by one helix turn reverses the pH dependence of the metarhodopsin I to metarhodopsin II transition.
    Zvyaga TA; Min KC; Beck M; Sakmar TP
    J Biol Chem; 1993 Mar; 268(7):4661-7. PubMed ID: 8444840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin.
    Acharya S; Karnik SS
    J Biol Chem; 1996 Oct; 271(41):25406-11. PubMed ID: 8810308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and pH dependence of light-induced deprotonation of the Schiff base of rhodopsin: possible coupling to proton uptake and formation of the active form of Meta II.
    Kuwata O; Yuan C; Misra S; Govindjee R; Ebrey TG
    Biochemistry (Mosc); 2001 Nov; 66(11):1283-99. PubMed ID: 11743873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for structural changes in carboxyl-terminal peptides of transducin alpha-subunit upon binding a soluble mimic of light-activated rhodopsin.
    Brabazon DM; Abdulaev NG; Marino JP; Ridge KD
    Biochemistry; 2003 Jan; 42(2):302-11. PubMed ID: 12525157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.
    Tsukamoto H; Farrens DL
    J Biol Chem; 2013 Sep; 288(39):28207-16. PubMed ID: 23940032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhodopsin activation exposes a key hydrophobic binding site for the transducin alpha-subunit C terminus.
    Janz JM; Farrens DL
    J Biol Chem; 2004 Jul; 279(28):29767-73. PubMed ID: 15070895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural origins of constitutive activation in rhodopsin: Role of the K296/E113 salt bridge.
    Kim JM; Altenbach C; Kono M; Oprian DD; Hubbell WL; Khorana HG
    Proc Natl Acad Sci U S A; 2004 Aug; 101(34):12508-13. PubMed ID: 15306683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Standfuss J; Zaitseva E; Mahalingam M; Vogel R
    J Mol Biol; 2008 Jun; 380(1):145-57. PubMed ID: 18511075
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.