These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 18078522)
1. Mining data from hemodynamic simulations via Bayesian emulation. Kolachalama VB; Bressloff NW; Nair PB Biomed Eng Online; 2007 Dec; 6():47. PubMed ID: 18078522 [TBL] [Abstract][Full Text] [Related]
2. Mining data from CFD simulation for aneurysm and carotid bifurcation models. Miloš R; Dejan P; Nenad F Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8311-4. PubMed ID: 22256273 [TBL] [Abstract][Full Text] [Related]
3. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis". Hewlin RL; Kizito JP Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548 [TBL] [Abstract][Full Text] [Related]
4. Effect of carotid artery geometry on the magnitude and distribution of wall shear stress gradients. Wells DR; Archie JP; Kleinstreuer C J Vasc Surg; 1996 Apr; 23(4):667-78. PubMed ID: 8627904 [TBL] [Abstract][Full Text] [Related]
5. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. Sankaran S; Marsden AL J Biomech Eng; 2011 Mar; 133(3):031001. PubMed ID: 21303177 [TBL] [Abstract][Full Text] [Related]
6. Computational analysis of the effects of exercise on hemodynamics in the carotid bifurcation. Younis HF; Kaazempur-Mofrad MR; Chung C; Chan RC; Kamm RD Ann Biomed Eng; 2003 Sep; 31(8):995-1006. PubMed ID: 12918914 [TBL] [Abstract][Full Text] [Related]
7. Path-dependent hemodynamics of the stenosed carotid bifurcation. Tambasco M; Steinman DA Ann Biomed Eng; 2003 Oct; 31(9):1054-65. PubMed ID: 14582608 [TBL] [Abstract][Full Text] [Related]
8. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. Milner JS; Moore JA; Rutt BK; Steinman DA J Vasc Surg; 1998 Jul; 28(1):143-56. PubMed ID: 9685141 [TBL] [Abstract][Full Text] [Related]
9. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821 [TBL] [Abstract][Full Text] [Related]
10. Parametric uncertainty and global sensitivity analysis in a model of the carotid bifurcation: Identification and ranking of most sensitive model parameters. Gul R; Bernhard S Math Biosci; 2015 Nov; 269():104-16. PubMed ID: 26367184 [TBL] [Abstract][Full Text] [Related]
11. Coronary arteries hemodynamics: effect of arterial geometry on hemodynamic parameters causing atherosclerosis. Wong KKL; Wu J; Liu G; Huang W; Ghista DN Med Biol Eng Comput; 2020 Aug; 58(8):1831-1843. PubMed ID: 32519006 [TBL] [Abstract][Full Text] [Related]
12. On the importance of blood rheology for bulk flow in hemodynamic models of the carotid bifurcation. Morbiducci U; Gallo D; Massai D; Ponzini R; Deriu MA; Antiga L; Redaelli A; Montevecchi FM J Biomech; 2011 Sep; 44(13):2427-38. PubMed ID: 21752380 [TBL] [Abstract][Full Text] [Related]
13. Accuracy of computational hemodynamics in complex arterial geometries reconstructed from magnetic resonance imaging. Moore JA; Steinman DA; Holdsworth DW; Ethier CR Ann Biomed Eng; 1999; 27(1):32-41. PubMed ID: 9916758 [TBL] [Abstract][Full Text] [Related]
14. Parametric geometry exploration of the human carotid artery bifurcation. Bressloff NW J Biomech; 2007; 40(11):2483-91. PubMed ID: 17196211 [TBL] [Abstract][Full Text] [Related]
15. A simulation environment for validating ultrasonic blood flow and vessel wall imaging based on fluid-structure interaction simulations: ultrasonic assessment of arterial distension and wall shear rate. Swillens A; Degroote J; Vierendeels J; Lovstakken L; Segers P Med Phys; 2010 Aug; 37(8):4318-30. PubMed ID: 20879592 [TBL] [Abstract][Full Text] [Related]
17. On the relative importance of rheology for image-based CFD models of the carotid bifurcation. Lee SW; Steinman DA J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332 [TBL] [Abstract][Full Text] [Related]
18. Mining data from hemodynamic simulations for generating prediction and explanation models. Bosnić Z; Vračar P; Radović MD; Devedžić G; Filipović ND; Kononenko I IEEE Trans Inf Technol Biomed; 2012 Mar; 16(2):248-54. PubMed ID: 21846607 [TBL] [Abstract][Full Text] [Related]
19. Improved prediction of disturbed flow via hemodynamically-inspired geometric variables. Bijari PB; Antiga L; Gallo D; Wasserman BA; Steinman DA J Biomech; 2012 Jun; 45(9):1632-7. PubMed ID: 22552156 [TBL] [Abstract][Full Text] [Related]
20. Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation. Younis HF; Kaazempur-Mofrad MR; Chan RC; Isasi AG; Hinton DP; Chau AH; Kim LA; Kamm RD Biomech Model Mechanobiol; 2004 Sep; 3(1):17-32. PubMed ID: 15300454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]