BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18079120)

  • 1. Superoxide generation by chlorophyllide a reductase of Rhodobacter sphaeroides.
    Kim EJ; Kim JS; Lee IH; Rhee HJ; Lee JK
    J Biol Chem; 2008 Feb; 283(7):3718-30. PubMed ID: 18079120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus.
    Nomata J; Mizoguchi T; Tamiaki H; Fujita Y
    J Biol Chem; 2006 May; 281(21):15021-8. PubMed ID: 16571720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth arrest of Synechocystis sp. PCC6803 by superoxide generated from heterologously expressed Rhodobacter sphaeroides chlorophyllide a reductase.
    Kim EJ; Kim JS; Rhee HJ; Lee JK
    FEBS Lett; 2009 Jan; 583(1):219-23. PubMed ID: 19084011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-sulfur cluster-dependent catalysis of chlorophyllide a oxidoreductase from Roseobacter denitrificans.
    Kiesel S; Wätzlich D; Lange C; Reijerse E; Bröcker MJ; Rüdiger W; Lubitz W; Scheer H; Moser J; Jahn D
    J Biol Chem; 2015 Jan; 290(2):1141-54. PubMed ID: 25422320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rhodobacter capsulatus chlorin reductase-encoding locus, bchA, consists of three genes, bchX, bchY, and bchZ.
    Burke DH; Alberti M; Hearst JE
    J Bacteriol; 1993 Apr; 175(8):2407-13. PubMed ID: 8468299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic analysis of the bchC and bchA genes of Rhodobacter sphaeroides.
    McGlynn P; Hunter CN
    Mol Gen Genet; 1993 Jan; 236(2-3):227-34. PubMed ID: 8437569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of subunit IV on superoxide generation by Rhodobacter sphaeroides cytochrome bc(1) complex.
    Yin Y; Tso SC; Yu CA; Yu L
    Biochim Biophys Acta; 2009 Jul; 1787(7):913-9. PubMed ID: 19348783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic systems with homology to nitrogenase.
    Moser J; Bröcker MJ
    Methods Mol Biol; 2011; 766():67-77. PubMed ID: 21833861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the L protein of Rhodobacter sphaeroides light-independent protochlorophyllide reductase with MgADP bound: a homologue of the nitrogenase Fe protein.
    Sarma R; Barney BM; Hamilton TL; Jones A; Seefeldt LC; Peters JW
    Biochemistry; 2008 Dec; 47(49):13004-15. PubMed ID: 19006326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters.
    Nomata J; Ogawa T; Kitashima M; Inoue K; Fujita Y
    FEBS Lett; 2008 Apr; 582(9):1346-50. PubMed ID: 18358835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the interaction of NADPH with Rhodobacter sphaeroides biotin sulfoxide reductase.
    Nelson KJ; Rajagopalan KV
    Biochemistry; 2004 Sep; 43(35):11226-37. PubMed ID: 15366932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of the preferred routes of C8-vinyl reduction in chlorophyll and bacteriochlorophyll biosynthesis.
    Canniffe DP; Chidgey JW; Hunter CN
    Biochem J; 2014 Sep; 462(3):433-40. PubMed ID: 24942864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in the putative H-channel in the cytochrome c oxidase from Rhodobacter sphaeroides show that this channel is not important for proton conduction but reveal modulation of the properties of heme a.
    Lee HM; Das TK; Rousseau DL; Mills D; Ferguson-Miller S; Gennis RB
    Biochemistry; 2000 Mar; 39(11):2989-96. PubMed ID: 10715119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Competitive inhibitions of the chlorophyll synthase of Synechocystis sp. strain PCC 6803 by bacteriochlorophyllide a and the bacteriochlorophyll synthase of Rhodobacter sphaeroides by chlorophyllide a.
    Kim EJ; Lee JK
    J Bacteriol; 2010 Jan; 192(1):198-207. PubMed ID: 19880605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors determining electron-transfer rates in cytochrome c oxidase: studies of the FQ(I-391) mutant of the Rhodobacter sphaeroides enzyme.
    Adelroth P; Mitchell DM; Gennis RB; Brzezinski P
    Biochemistry; 1997 Sep; 36(39):11787-96. PubMed ID: 9305969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for electron equilibrium between the two hemes bL in the dimeric cytochrome bc1 complex.
    Gong X; Yu L; Xia D; Yu CA
    J Biol Chem; 2005 Mar; 280(10):9251-7. PubMed ID: 15615714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis.
    Harada J; Mizoguchi T; Tsukatani Y; Yokono M; Tanaka A; Tamiaki H
    J Biol Chem; 2014 May; 289(18):12716-26. PubMed ID: 24637023
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel cytochrome c oxidase from Rhodobacter sphaeroides that lacks CuA.
    García-Horsman JA; Berry E; Shapleigh JP; Alben JO; Gennis RB
    Biochemistry; 1994 Mar; 33(10):3113-9. PubMed ID: 8130226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic and genetic evidence for two heme-Cu-containing oxidases in Rhodobacter sphaeroides.
    Shapleigh JP; Hill JJ; Alben JO; Gennis RB
    J Bacteriol; 1992 Apr; 174(7):2338-43. PubMed ID: 1313003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Re-design of Rhodobacter sphaeroides dimethyl sulfoxide reductase. Enhancement of adenosine N1-oxide reductase activity.
    Hilton JC; Temple CA; Rajagopalan KV
    J Biol Chem; 1999 Mar; 274(13):8428-36. PubMed ID: 10085074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.