These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 18079292)

  • 1. Revealing the bifurcation in the unfolding pathways of GFP by using single-molecule experiments and simulations.
    Mickler M; Dima RI; Dietz H; Hyeon C; Thirumalai D; Rief M
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20268-73. PubMed ID: 18079292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the origin of tubulin rigidity with molecular simulations.
    Dima RI; Joshi H
    Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15743-8. PubMed ID: 18840679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the energy landscape of GFP by single-molecule mechanical experiments.
    Dietz H; Rief M
    Proc Natl Acad Sci U S A; 2004 Nov; 101(46):16192-7. PubMed ID: 15531635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mapping the energy landscape of biomolecules using single molecule force correlation spectroscopy: theory and applications.
    Barsegov V; Klimov DK; Thirumalai D
    Biophys J; 2006 Jun; 90(11):3827-41. PubMed ID: 16533852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Denaturant-dependent folding of GFP.
    Reddy G; Liu Z; Thirumalai D
    Proc Natl Acad Sci U S A; 2012 Oct; 109(44):17832-8. PubMed ID: 22778437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forced-unfolding and force-quench refolding of RNA hairpins.
    Hyeon C; Thirumalai D
    Biophys J; 2006 May; 90(10):3410-27. PubMed ID: 16473903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical unfolding pathways of the enhanced yellow fluorescent protein revealed by single molecule force spectroscopy.
    Perez-Jimenez R; Garcia-Manyes S; Ainavarapu SR; Fernandez JM
    J Biol Chem; 2006 Dec; 281(52):40010-4. PubMed ID: 17082195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways and kinetic barriers in mechanical unfolding and refolding of RNA and proteins.
    Hyeon C; Dima RI; Thirumalai D
    Structure; 2006 Nov; 14(11):1633-45. PubMed ID: 17098189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sop-GPU: accelerating biomolecular simulations in the centisecond timescale using graphics processors.
    Zhmurov A; Dima RI; Kholodov Y; Barsegov V
    Proteins; 2010 Nov; 78(14):2984-99. PubMed ID: 20715052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the unfolding process of green fluorescent protein by molecular dynamics simulation.
    Hisatomi Y; Katagiri D; Neya S; Hara M; Hoshino T
    J Phys Chem B; 2008 Jul; 112(29):8672-80. PubMed ID: 18582098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What can atomic force microscopy tell us about protein folding?
    Best RB; Clarke J
    Chem Commun (Camb); 2002 Feb; (3):183-92. PubMed ID: 12120362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations.
    He C; Genchev GZ; Lu H; Li H
    J Am Chem Soc; 2012 Jun; 134(25):10428-35. PubMed ID: 22626004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical unfolding intermediates observed by single-molecule force spectroscopy in a fibronectin type III module.
    Li L; Huang HH; Badilla CL; Fernandez JM
    J Mol Biol; 2005 Jan; 345(4):817-26. PubMed ID: 15588828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical unfolding of RNA: from hairpins to structures with internal multiloops.
    Hyeon C; Thirumalai D
    Biophys J; 2007 Feb; 92(3):731-43. PubMed ID: 17028142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing the folded state and mechanical unfolding pathways of T4 lysozyme using all-atom and coarse-grained molecular simulation.
    Zheng W; Glenn P
    J Chem Phys; 2015 Jan; 142(3):035101. PubMed ID: 25612731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the elasticity of fibronectin fibrils: unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy.
    Abu-Lail NI; Ohashi T; Clark RL; Erickson HP; Zauscher S
    Matrix Biol; 2006 Apr; 25(3):175-84. PubMed ID: 16343877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axis-dependent anisotropy in protein unfolding from integrated nonequilibrium single-molecule experiments, analysis, and simulation.
    Nome RA; Zhao JM; Hoff WD; Scherer NF
    Proc Natl Acad Sci U S A; 2007 Dec; 104(52):20799-804. PubMed ID: 18093935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The dual-basin landscape in GFP folding.
    Andrews BT; Gosavi S; Finke JM; Onuchic JN; Jennings PA
    Proc Natl Acad Sci U S A; 2008 Aug; 105(34):12283-8. PubMed ID: 18713871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstruction of mechanical unfolding and refolding pathways of proteins with atomic force spectroscopy and computer simulations.
    Li Q; Apostolidou D; Marszalek PE
    Methods; 2022 Jan; 197():39-53. PubMed ID: 34020035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulation of mechanical unfolding of proteins based on a simple two-state model.
    King WT; Su M; Yang G
    Int J Biol Macromol; 2010 Mar; 46(2):159-66. PubMed ID: 20004685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.