These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18079783)

  • 1. Method for measuring the mean time of flight spent by photons inside a volume element of a highly diffusing medium.
    Zaccanti G; Alianelli L; Blumetti C; Carraresi S
    Opt Lett; 1999 Sep; 24(18):1290-2. PubMed ID: 18079783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation.
    Martelli F; Bassani M; Alianelli L; Zangheri L; Zaccanti G
    Phys Med Biol; 2000 May; 45(5):1359-73. PubMed ID: 10843109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple inexpensive method of measuring the temporal spreading of a light pulse propagating in a turbid medium.
    Zaccanti G; Bruscaglioni P; Dami M
    Appl Opt; 1990 Sep; 29(27):3938-44. PubMed ID: 20577317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Penetration depth of light re-emitted by a diffusive medium: theoretical and experimental investigation.
    Del Bianco S; Martelli F; Zaccanti G
    Phys Med Biol; 2002 Dec; 47(23):4131-44. PubMed ID: 12502038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulation of time-dependent, transport-limited fluorescent boundary measurements in frequency domain.
    Pan T; Rasmussen JC; Lee JH; Sevick-Muraca EM
    Med Phys; 2007 Apr; 34(4):1298-311. PubMed ID: 17500461
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluence rate directly derived from photon pathlengths: a tool for Monte Carlo simulations in biomedical optics.
    Sassaroli A; Tommasi F; Cavalieri S; Martelli F
    Biomed Opt Express; 2023 Jan; 14(1):148-162. PubMed ID: 36698672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.
    Yin L; Wang Q; Zhang Q; Jiang H
    Opt Lett; 2007 Sep; 32(17):2556-8. PubMed ID: 17767303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering regions.
    Tarvainen T; Vauhkonen M; Kolehmainen V; Arridge SR; Kaipio JP
    Phys Med Biol; 2005 Oct; 50(20):4913-30. PubMed ID: 16204880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light output measurements and computational models of microcolumnar CsI scintillators for x-ray imaging.
    Nillius P; Klamra W; Sibczynski P; Sharma D; Danielsson M; Badano A
    Med Phys; 2015 Feb; 42(2):600-605. PubMed ID: 28102604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of particle flux in a static matrix with suppressed influence of optical properties, using low coherence interferometry.
    Varghese B; Rajan V; Van Leeuwen TG; Steenbergen W
    Opt Express; 2010 Feb; 18(3):2849-57. PubMed ID: 20174114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons.
    Liebert A; Wabnitz H; Grosenick D; Möller M; Macdonald R; Rinneberg H
    Appl Opt; 2003 Oct; 42(28):5785-92. PubMed ID: 14528944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved subtraction method for measuring optical properties of turbid media.
    Milej D; Abdalmalak A; Janusek D; Diop M; Liebert A; St Lawrence K
    Appl Opt; 2016 Mar; 55(7):1507-13. PubMed ID: 26974605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental validation of Monte Carlo and finite-element methods for the estimation of the optical path length in inhomogeneous tissue.
    Okada E; Schweiger M; Arridge SR; Firbank M; Delpy DT
    Appl Opt; 1996 Jul; 35(19):3362-71. PubMed ID: 21102723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of radiative transfer Monte Carlo and volume integral equation methods of studying the clustering of small scatterers.
    Green K; Lumme K
    Appl Opt; 2001 Aug; 40(22):3711-7. PubMed ID: 18360404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation on the accuracy of plastic scintillators and of the spectrum discrimination method in small photon fields.
    Papaconstadopoulos P; Archambault L; Seuntjens J
    Med Phys; 2017 Feb; 44(2):654-664. PubMed ID: 27997030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.