These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 18079796)

  • 1. Lens-free in-line optical isolators.
    Sato T; Sun J; Kasahara R; Kawakami S
    Opt Lett; 1999 Oct; 24(19):1337-9. PubMed ID: 18079796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance single-mode fiber polarization-independent isolators.
    Chang KW; Sorin WV
    Opt Lett; 1990 Apr; 15(8):449-51. PubMed ID: 19767972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact optical isolator for fibers using birefringent wedges.
    Shirasaki M; Asama K
    Appl Opt; 1982 Dec; 21(23):4296-9. PubMed ID: 20401058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amorphous-Si waveguide on a garnet magneto-optical isolator with a TE mode nonreciprocal phase shift.
    Ishida E; Miura K; Shoji Y; Yokoi H; Mizumoto T; Nishiyama N; Arai S
    Opt Express; 2017 Jan; 25(1):452-462. PubMed ID: 28085839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TE-mode magneto-optical isolator based on an asymmetric microring resonator under a unidirectional magnetic field.
    Liu S; Shoji Y; Mizumoto T
    Opt Express; 2022 Mar; 30(6):9934-9943. PubMed ID: 35299406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Mach-Zehnder interferometer isolator.
    Singh N; Kärtner FX
    Opt Express; 2022 Feb; 30(4):5973-5980. PubMed ID: 35209546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-chip waveguide isolator based on bismuth iron garnet operating via nonreciprocal single-mode cutoff.
    Drezdzon SM; Yoshie T
    Opt Express; 2009 May; 17(11):9276-81. PubMed ID: 19466179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-field adaptor between large-mode-area fiber and single-mode fiber based on fiber tapering and thermally expanded core technique.
    Zhou X; Chen Z; Zhou H; Hou J
    Appl Opt; 2014 Aug; 53(22):5053-7. PubMed ID: 25090339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mode-evolution-based TE mode magneto-optical isolator using asymmetric adiabatic tapered waveguides.
    Liu S; Shoji Y; Mizumoto T
    Opt Express; 2021 Jul; 29(15):22838-22846. PubMed ID: 34614562
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GaInAsP/InP MZI waveguide optical isolator integrated with spot size converter.
    Sobu Y; Shoji Y; Sakurai K; Mizumoto T
    Opt Express; 2013 Jul; 21(13):15373-81. PubMed ID: 23842323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bidirectional transmission of a collimator with double-combined collimating lenses and thermally expanded core fibers.
    Zhao Z; Duan S; Xu X; Wang S; Wan X
    Rev Sci Instrum; 2023 Mar; 94(3):035105. PubMed ID: 37012824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices.
    Shin JS; Lee CH; Shin SY; Huang GH; Chu WS; Oh MC; Noh YO; Lee HJ
    Opt Express; 2014 Oct; 22(20):23801-6. PubMed ID: 25321959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated optical isolators using electrically driven acoustic waves.
    Dostart N; Ehrlichman Y; Gentry C; Popović MA
    Opt Express; 2020 Nov; 28(24):36055-36069. PubMed ID: 33379709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial dielectric polarizing-beamsplitter and isolator for the terahertz region.
    Mendis R; Nagai M; Zhang W; Mittleman DM
    Sci Rep; 2017 Jul; 7(1):5909. PubMed ID: 28725040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monolithic integration of microlenses on the backside of a silicon photonics chip for expanded beam coupling.
    Mangal N; Snyder B; Van Campenhout J; Van Steenberge G; Missinne J
    Opt Express; 2021 Mar; 29(5):7601-7615. PubMed ID: 33726258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gradient-index optical fiber lens for efficient fiber-to-chip coupling.
    Melkonyan H; Al Qubaisi K; Sloyan K; Khilo A; Dahlem MS
    Opt Express; 2017 Jun; 25(12):13035-13045. PubMed ID: 28788843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cavity-Free Optical Isolators and Circulators Using a Chiral Cross-Kerr Nonlinearity.
    Xia K; Nori F; Xiao M
    Phys Rev Lett; 2018 Nov; 121(20):203602. PubMed ID: 30500258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-isolation optical isolator using a BiCalnVIG single crystal.
    Ma X; Tao S
    Appl Opt; 1992 Jul; 31(21):4122-4. PubMed ID: 20725390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Travelling-wave Mach-Zehnder modulators functioning as optical isolators.
    Dong P
    Opt Express; 2015 Apr; 23(8):10498-505. PubMed ID: 25969090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Note: a high transmission Faraday optical isolator in the 9.2 μm range.
    Hilico L; Douillet A; Karr JP; Tournié E
    Rev Sci Instrum; 2011 Sep; 82(9):096106. PubMed ID: 21974633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.