These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 18079814)

  • 1. Pulsed top-hat beam thermal-lens measurement for ultraviolet dielectric coatings.
    Li B; Martin S; Welsch E
    Opt Lett; 1999 Oct; 24(20):1398-400. PubMed ID: 18079814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ measurement on ultraviolet dielectric components by a pulsed top-hat beam thermal lens.
    Li B; Martin S; Welsch E
    Appl Opt; 2000 Sep; 39(25):4690-7. PubMed ID: 18350060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probe-beam diffraction in a pulsed top-hat beam thermal lens with a mode-mismatched configuration.
    Li B; Welsch E
    Appl Opt; 1999 Aug; 38(24):5241-9. PubMed ID: 18324024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser conditioning of LaF(3)/MgF(2) dielectric coatings at 248 nm.
    Eva E; Mann K; Kaiser N; Anton B; Henking R; Ristau D; Weissbrodt P; Mademann D; Raupach L; Hacker E
    Appl Opt; 1996 Oct; 35(28):5613-9. PubMed ID: 21127565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved thermal mirror technique with top-hat cw laser excitation.
    Astrath FB; Astrath NG; Shen J; Zhou J; Malacarne LC; Pedreira PR; Baesso ML
    Opt Express; 2008 Aug; 16(16):12214-9. PubMed ID: 18679498
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low-absorption materials.
    Astrath NG; Astrath FB; Shen J; Zhou J; Pedreira PR; Malacarne LC; Bento AC; Baesso ML
    Opt Lett; 2008 Jul; 33(13):1464-6. PubMed ID: 18594666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined laser calorimetry and photothermal technique for absorption measurement of optical coatings.
    Li B; Blaschke H; Ristau D
    Appl Opt; 2006 Aug; 45(23):5827-31. PubMed ID: 16926868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved thermal lens spectroscopy with a single-pulsed laser excitation beam: an analytical model for dual-beam mode-mismatched experiments.
    Sabaeian M; Rezaei H; Ghalambor-Dezfouli A
    Appl Opt; 2017 Feb; 56(4):999-1005. PubMed ID: 28158105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of annealing on properties and performance of HfO
    Falmbigl M; Godin K; George J; Mühlig C; Rubin B
    Opt Express; 2022 Apr; 30(8):12326-12336. PubMed ID: 35472870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed mode thermal lens effect detection in the near field via thermally induced probe beam spatial phase modulation: a theory.
    Power JF
    Appl Opt; 1990 Jan; 29(1):52-63. PubMed ID: 20556068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity enhancement of surface thermal lens technique with a short-wavelength probe beam: experiment.
    Zhang X; Li B
    Rev Sci Instrum; 2015 Feb; 86(2):024902. PubMed ID: 25725872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of coating thickness on laser-induced damage characteristics of anti-reflection coatings irradiated by 1064  nm nanosecond laser pulses.
    Song Z; Cheng X; Ma H; Zhang J; Ma B; Jiao H; Wang Z
    Appl Opt; 2017 Feb; 56(4):C188-C192. PubMed ID: 28158072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thickness uniformity measurements and damage threshold tests of large-area GaAs/AlGaAs crystalline coatings for precision interferometry.
    Koch P; Cole GD; Deutsch C; Follman D; Heu P; Kinley-Hanlon M; Kirchhoff R; Leavey S; Lehmann J; Oppermann P; Rai AK; Tornasi Z; Wöhler J; Wu DS; Zederbauer T; Lück H
    Opt Express; 2019 Dec; 27(25):36731-36740. PubMed ID: 31873446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative investigation of laser-induced damage fatigue in HfO
    Smalakys L; Drobužaitė E; Momgaudis B; Grigutis R; Melninkaitis A
    Opt Express; 2020 Aug; 28(17):25335-25345. PubMed ID: 32907056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Damage threshold prediction of hafnia-silica multilayer coatings by nondestructive evaluation of fluence-limiting defects.
    Wu Z; Stolz CJ; Weakley SC; Hughes JD; Zhao Q
    Appl Opt; 2001 Apr; 40(12):1897-906. PubMed ID: 18357189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluoride antireflection coatings deposited at 193 nm.
    Liu MC; Lee CC; Liao BH; Kaneko M; Nakahira K; Takano Y
    Appl Opt; 2008 May; 47(13):C214-8. PubMed ID: 18449249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear absorption in single LaF(3) and MgF(2) layers at 193 nm measured by surface sensitive laser induced deflection technique.
    Mühlig C; Bublitz S; Kufert S
    Appl Opt; 2009 Dec; 48(35):6781-7. PubMed ID: 20011019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vacuum ultraviolet coatings of Al protected with MgF(2) prepared both by ion-beam sputtering and by evaporation.
    Fernández-Perea M; Larruquert JI; Aznárez JA; Pons A; Méndez JA
    Appl Opt; 2007 Aug; 46(22):4871-8. PubMed ID: 17676090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the distribution of laser damage precursors at 1064 nm, 12 ns on niobia-silica and zirconia-silica mixtures.
    Fu X; Melnikaitis A; Gallais L; Kiáčas S; Drazdys R; Sirutkaitis V; Commandré M
    Opt Express; 2012 Nov; 20(23):26089-98. PubMed ID: 23187425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal dependency in the picosecond regime of laser damage growth.
    Ollé A; Diop S; Roquin N; Gallais L; Lamaignère L
    Opt Lett; 2020 Jul; 45(14):4024-4027. PubMed ID: 32667345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.