These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18079841)

  • 1. Planar Bragg gratings made by excimer-laser modification of ion-exchanged waveguides.
    Montero C; Gomez-Reino C; Brebner JL
    Opt Lett; 1999 Nov; 24(21):1487-9. PubMed ID: 18079841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UV-exposed Bragg gratings for laser applications in silver-sodium ion-exchanged phosphate glass waveguides.
    Yliniemi S; Albert J; Wang Q; Honkanen S
    Opt Express; 2006 Apr; 14(7):2898-903. PubMed ID: 19516427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep UV Formation of Long-Term Stable Optical Bragg Gratings in Epoxy Waveguides and Their Biomedical Sensing Potentials.
    Hessler S; RĂ¼th M; Lemke HD; Schmauss B; Hellmann R
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205166
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond laser inscription of waveguides and Bragg gratings in transparent cyclic olefin copolymers.
    Roth GL; Hessler S; Kefer S; Girschikofsky M; Esen C; Hellmann R
    Opt Express; 2020 Jun; 28(12):18077-18084. PubMed ID: 32680008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multipurpose Polymer Bragg Grating-Based Optomechanical Sensor Pad.
    Hessler S; Bott P; Kefer S; Schmauss B; Hellmann R
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Negligible birefringence in dual-mode ion-exchanged glass waveguide gratings.
    Yliniemi S; Albert J; Laronche A; Castro JM; Geraghty D; Honkanen S
    Appl Opt; 2006 Sep; 45(25):6602-6. PubMed ID: 16912802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct laser writing of thermally stabilized channel waveguides with Bragg gratings.
    Nishiyama H; Miyamoto I; Matsumoto S; Saito M; Kintaka K; Nishii J
    Opt Express; 2004 Sep; 12(19):4589-95. PubMed ID: 19484010
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Planar optical waveguides in Bi4Ge3O12 crystal fabricated by swift heavy-ion irradiation.
    Yang J; Zhang C; Chen F; Akhmadaliev Sh; Zhou S
    Appl Opt; 2011 Dec; 50(36):6678-81. PubMed ID: 22193199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photowritten gratings in ion-exchanged glass waveguides.
    Roman JE; Winick KA
    Opt Lett; 1993 May; 18(10):808-10. PubMed ID: 19802280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of fiber Bragg gratings with 267 nm femtosecond radiation.
    Zagorulko K; Kryukov P; Larionov Y; Rybaltovsky A; Dianov E; Chekalin S; Matveets Y; Kompanets V
    Opt Express; 2004 Nov; 12(24):5996-6001. PubMed ID: 19488241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Swift heavy-ion irradiated active waveguides in Nd:YAG crystals: fabrication and laser generation.
    Ren Y; Dong N; Chen F; Benayas A; Jaque D; Qiu F; Narusawa T
    Opt Lett; 2010 Oct; 35(19):3276-8. PubMed ID: 20890358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photosensitive GeO2-SiO2 films for ultraviolet laser writing of channel waveguides and bragg gratings with Cr-loaded waveguide structure.
    Takahashi M; Sakoh A; Ichii K; Tokuda Y; Yoko T; Nishii J
    Appl Opt; 2003 Aug; 42(22):4594-8. PubMed ID: 12916627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond laser direct writing of multiwavelength Bragg grating waveguides in glass.
    Zhang H; Eaton SM; Li J; Herman PR
    Opt Lett; 2006 Dec; 31(23):3495-7. PubMed ID: 17099761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isochronal annealing of Bragg gratings written in H2-loaded or in UV-hypersensitized germano-phosphosilicate planar waveguides: a comparison.
    Beugin V; Niay P; Douay M
    Opt Express; 2005 Sep; 13(18):6777-90. PubMed ID: 19498694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioresorbable optical fiber Bragg gratings.
    Pugliese D; Konstantaki M; Konidakis I; Ceci-Ginistrelli E; Boetti NG; Milanese D; Pissadakis S
    Opt Lett; 2018 Feb; 43(4):671-674. PubMed ID: 29444050
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a highly photorefractive RF-sputtered SiO2-GeO2 waveguide.
    Sebastiani S; Conti GN; Pelli S; Righini G; Chiasera A; Ferrari M; Tosello C
    Opt Express; 2005 Mar; 13(5):1696-701. PubMed ID: 19495047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast laser fabrication of Bragg waveguides in chalcogenide glass.
    McMillen B; Li M; Huang S; Zhang B; Chen KP
    Opt Lett; 2014 Jun; 39(12):3579-82. PubMed ID: 24978541
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UV-Writing of a Superstructure Waveguide Bragg Grating in a Planar Polymer Substrate.
    Rosenberger M; Schmauss B; Hellmann R
    Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28841175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.
    Zou Z; Zhou L; Li X; Chen J
    Opt Express; 2015 Aug; 23(16):20784-95. PubMed ID: 26367931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bragg gratings printed upon thin glass films by excimer laser irradiation and selective chemical etching.
    Nishii J; Yamanaka H
    Appl Opt; 1997 Sep; 36(27):6852-6. PubMed ID: 18259555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.