These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18079888)

  • 1. Frequency structure in an electronically tuned Ti:sapphire laser: periodic appearance of static fringes in both homodyne and heterodyne Michelson interferometers.
    Geng J; Wada S; Saito N; Tashiro H
    Opt Lett; 1999 Nov; 24(22):1635-7. PubMed ID: 18079888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Widely tunable, narrow-linewidth, subnanosecond pulse generation in an electronically tuned Ti:sapphire laser.
    Geng J; Wada S; Urata Y; Tashiro H
    Opt Lett; 1999 May; 24(10):676-8. PubMed ID: 18073820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Common-path heterodyne self-mixing interferometry with polarization and frequency multiplexing.
    Zhang S; Zhang S; Tan Y; Sun L
    Opt Lett; 2016 Oct; 41(20):4827-4830. PubMed ID: 28005841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterodyne wavelength meter for continuous-wave lasers.
    Wang X; Li Y; Zhang S
    Appl Opt; 2007 Aug; 46(23):5631-4. PubMed ID: 17694109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-coherence heterodyne interferometry using an achromatic frequency shifter based on a frequency-domain optical delay line.
    Lu SH; Chiang HP; Lin CY; Chou CC
    Appl Opt; 2014 Feb; 53(6):1047-51. PubMed ID: 24663300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Narrow-band, widely electronically tuned frequency-shifted feedback laser.
    Wang Y; Saito N; Wada S; Tashiro H
    Opt Lett; 2002 Apr; 27(7):515-7. PubMed ID: 18007850
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterodyne interferometer with subatomic periodic nonlinearity.
    Wu CM; Lawall J; Deslattes RD
    Appl Opt; 1999 Jul; 38(19):4089-94. PubMed ID: 18323886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrow-linewidth chirped frequency comb from a frequency-shifted feedback Ti:sapphire laser seeded by a phase-modulated single-frequency fiber laser.
    Brandl MF; Mücke OD
    Opt Lett; 2010 Dec; 35(24):4223-5. PubMed ID: 21165144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadly tunable mid-infrared intracavity difference-frequency laser.
    Canto-Said EJ; McCann MP; Wigley PG; Dixon GJ
    Opt Lett; 1995 Jun; 20(11):1268-70. PubMed ID: 19859495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of separated source frequency delivery for a fiber-coupled heterodyne displacement interferometer.
    Meskers AJ; Spronck JW; Munnig Schmidt RH
    Opt Lett; 2014 Aug; 39(15):4603-6. PubMed ID: 25078239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-radio-frequency signal tuned acousto-optic tunable filter.
    Zhang C; Wang H; Zhang Z; Yuan J; Shi L; Sheng Z; Zhang X
    Opt Express; 2018 Jan; 26(2):1049-1054. PubMed ID: 29401977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential wavelength-scanning heterodyne interferometer for measuring large step height.
    Lu SH; Chiueh CI; Lee CC
    Appl Opt; 2002 Oct; 41(28):5866-71. PubMed ID: 12371543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of deep ultraviolet narrow linewidth laser by mixing frequency Ti:sapphire laser at 5 kHz repetition rate.
    Wang N; Wang R; Teng H; Li D; Wei Z
    Appl Opt; 2012 Apr; 51(12):1905-9. PubMed ID: 22534895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency stabilization of a continuous-wave Ti:sapphire laser.
    Boyd TL; Kimble HJ
    Opt Lett; 1991 Jun; 16(11):808-10. PubMed ID: 19776792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of intense control laser pulses on homodyne-detected rotational wave packet dynamics in O2 by degenerate four-wave mixing.
    Stavros VG; Harel E; Leone SR
    J Chem Phys; 2005 Feb; 122(6):064301. PubMed ID: 15740366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. External power-enhancement cavity versus intracavity frequency doubling of Ti:sapphire lasers using BIBO.
    Cruz LS; Cruz FC
    Opt Express; 2007 Sep; 15(19):11913-21. PubMed ID: 19547554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A construction method of the quasi-monolithic compact interferometer based on UV-adhesive bonding.
    Lin X; Yan H; Ma Y; Zhou Z
    Rev Sci Instrum; 2023 Jul; 94(7):. PubMed ID: 37470703
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified homodyne laser interferometer based on phase modulation for simultaneously measuring displacement and angle.
    Wang X; Su J; Yang J; Miao L; Huang T
    Appl Opt; 2021 Jun; 60(16):4647-4653. PubMed ID: 34143021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser.
    Klein ME; Gross P; Boller KJ; Auerbach M; Wessels P; Fallnich C
    Opt Lett; 2003 Jun; 28(11):920-2. PubMed ID: 12816246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Difference-frequency terahertz-wave generation from 4-dimethylamino-N-methyl-4-stilbazolium-tosylate by use of an electronically tuned Ti:sapphire laser.
    Kawase K; Mizuno M; Sohma S; Takahashi H; Taniuchi T; Urata Y; Wada S; Tashiro H; Ito H
    Opt Lett; 1999 Aug; 24(15):1065-7. PubMed ID: 18073942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.