These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 18079895)

  • 1. Enhancement of chi((2)) cascading processes in one-dimensional photonic bandgap structures.
    D'Aguanno G; Centini M; Sibilia C; Bertolotti M; Scalora M; Bloemer MJ; Bowden CM
    Opt Lett; 1999 Dec; 24(23):1663-5. PubMed ID: 18079895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear sensitivity enhancement with one-dimensional photonic bandgap microcavity arrays.
    Blair S
    Opt Lett; 2002 Apr; 27(8):613-5. PubMed ID: 18007879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond pump-probe measurement of bandgap changes in SiO2/TiO2 one-dimensional photonic bandgap structures.
    Hwang J; Kim MJ; Wu JW; Lee SM; Rhee BK
    Opt Lett; 2006 Feb; 31(3):377-9. PubMed ID: 16480214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photonic band edge effects in finite structures and applications to chi 2 interactions.
    D'Aguanno G; Centini M; Scalora M; Sibilia C; Dumeige Y; Vidakovic P; Levenson JA; Bloemer MJ; Bowden CM; Haus JW; Bertolotti M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Jul; 64(1 Pt 2):016609. PubMed ID: 11461430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancement of sum frequency generation near the photonic band gap edge under the quasiphase matching conditions.
    Balakin AV; Bushuev VA; Mantsyzov BI; Ozheredov IA; Petrov EV; Shkurinov AP; Masselin P; Mouret G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046609. PubMed ID: 11308970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk.
    Liu S; Zheng Y; Chen X
    Opt Lett; 2017 Sep; 42(18):3626-3629. PubMed ID: 28914918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous perfect phase matching for second and third harmonic generations in ZnS/YF(3) photonic crystal for visible emissions.
    Lu W; Xie P; Zhang ZQ; Wong GK; Wong KS
    Opt Express; 2006 Dec; 14(25):12353-8. PubMed ID: 19529665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits.
    Merklein M; Kabakova IV; Büttner TF; Choi DY; Luther-Davies B; Madden SJ; Eggleton BJ
    Nat Commun; 2015 Mar; 6():6396. PubMed ID: 25736909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localized modes in one-dimensional nonlinear periodic photonic structures.
    Apalkov VM
    J Phys Condens Matter; 2008 Jul; 20(27):275221. PubMed ID: 21694382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical parametric amplification in one-dimensional photonic bandgap structures.
    Wicharn S; Buranasiri P; Ruttanapun C; Jindajitawat P
    Appl Opt; 2013 Sep; 52(25):6090-9. PubMed ID: 24085064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing optical field intensities in Gaussian-profile fiber Bragg gratings.
    Upham J; De Leon I; Grobnic D; Ma E; Dicaire MC; Schulz SA; Murugkar S; Boyd RW
    Opt Lett; 2014 Feb; 39(4):849-52. PubMed ID: 24562223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of nonlinear effects at the degenerate band edge of two-dimensional photonic crystals.
    Astic M; Delaye P; Frey R; Roosen G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 2):056608. PubMed ID: 19518583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transition of lasing modes in disordered active photonic crystals.
    Kwan KC; Tao XM; Peng GD
    Opt Lett; 2007 Sep; 32(18):2720-2. PubMed ID: 17873947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group-velocity-matched multistep cascading in nonlinear photonic crystals.
    Saltiel SM; Kivshar YS
    Opt Lett; 2006 Nov; 31(22):3321-3. PubMed ID: 17072410
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-loss hollow-core silica/air photonic bandgap fibre.
    Smith CM; Venkataraman N; Gallagher MT; Müller D; West JA; Borrelli NF; Allan DC; Koch KW
    Nature; 2003 Aug; 424(6949):657-9. PubMed ID: 12904788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced optical nonlinearity near the photonic bandgap edges of a cholesteric liquid crystal.
    Hwang J; Ha NY; Chang HJ; Park B; Wu JW
    Opt Lett; 2004 Nov; 29(22):2644-6. PubMed ID: 15552672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous multi-frequency topological edge modes between one-dimensional photonic crystals.
    Choi KH; Ling CW; Lee KF; Tsang YH; Fung KH
    Opt Lett; 2016 Apr; 41(7):1644-7. PubMed ID: 27192308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of background dielectric on TE-polarized photonic bandgap of metallodielectric photonic crystals using Dirichlet-to-Neumann map method.
    Sedghi A; Rezaei B
    Appl Opt; 2016 Nov; 55(33):9417-9421. PubMed ID: 27869843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of surface plasmon polaritons near the photonic-bandgap edge for interphotonic band switching devices.
    Onuki T; Ohtera Y; Tokizaki T
    J Microsc; 2008 Mar; 229(Pt 3):447-51. PubMed ID: 18331493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.