These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Wave-front sensing from subdivision of the focal plane with a lenslet array. Clare RM; Lane RG J Opt Soc Am A Opt Image Sci Vis; 2005 Jan; 22(1):117-25. PubMed ID: 15669622 [TBL] [Abstract][Full Text] [Related]
4. Shack Hartmann wave-front measurement with a large F-number plastic microlens array. Yoon GY; Jitsuno T; Nakatsuka M; Nakai S Appl Opt; 1996 Jan; 35(1):188-92. PubMed ID: 21068997 [TBL] [Abstract][Full Text] [Related]
5. Focal plane position detection with a diffractive optic for shack-hartmann wave-front sensor fabrication. Mansell JD; Gustafson EK Appl Opt; 2001 Mar; 40(7):1074-9. PubMed ID: 18357091 [TBL] [Abstract][Full Text] [Related]
6. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. Liang J; Grimm B; Goelz S; Bille JF J Opt Soc Am A Opt Image Sci Vis; 1994 Jul; 11(7):1949-57. PubMed ID: 8071736 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional surface profiling and optical characterization of liquid microlens using a Shack-Hartmann wave front sensor. Li C; Hall G; Zeng X; Zhu D; Eliceiri K; Jiang H Appl Phys Lett; 2011 Apr; 98(17):171104. PubMed ID: 22046057 [TBL] [Abstract][Full Text] [Related]
9. Very fast wave-front measurements at the human eye with a custom CMOS-based Hartmann-Shack sensor. Nirmaier T; Pudasaini G; Bille J Opt Express; 2003 Oct; 11(21):2704-16. PubMed ID: 19471385 [TBL] [Abstract][Full Text] [Related]
10. Fundamental performance of transverse wind estimator from Shack-Hartmann wave-front sensor measurements. Li Z; Li X Opt Express; 2018 Apr; 26(9):11859-11876. PubMed ID: 29716103 [TBL] [Abstract][Full Text] [Related]
11. Position and displacement sensing with shack-hartmann wave-front sensors. Ares J; Mancebo T; Bará S Appl Opt; 2000 Apr; 39(10):1511-20. PubMed ID: 18345044 [TBL] [Abstract][Full Text] [Related]
12. Wave-front reconstruction with a shack-hartmann sensor with an iterative spline fitting method. Groening S; Sick B; Donner K; Pfund J; Lindlein N; Schwider J Appl Opt; 2000 Feb; 39(4):561-7. PubMed ID: 18337926 [TBL] [Abstract][Full Text] [Related]
13. Measurement of wave-front aberration in soft contact lenses by use of a Shack-Hartmann wave-front sensor. Jeong TM; Menon M; Yoon G Appl Opt; 2005 Jul; 44(21):4523-7. PubMed ID: 16047902 [TBL] [Abstract][Full Text] [Related]
14. Algorithm to increase the largest aberration that can be reconstructed from Hartmann sensor measurements. Roggemann MC; Schulz TJ Appl Opt; 1998 Jul; 37(20):4321-9. PubMed ID: 18285881 [TBL] [Abstract][Full Text] [Related]
15. Wave-front reconstruction using a Shack-Hartmann sensor. Lane RG; Tallon M Appl Opt; 1992 Nov; 31(32):6902-8. PubMed ID: 20733929 [TBL] [Abstract][Full Text] [Related]
16. Refractive microlens array for wave-front analysis in the medium to hard x-ray range. Mayo SC; Sexton B Opt Lett; 2004 Apr; 29(8):866-8. PubMed ID: 15119404 [TBL] [Abstract][Full Text] [Related]
18. An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device. Mu Q; Cao Z; Hu L; Li D; Xuan L Opt Express; 2006 Sep; 14(18):8013-8. PubMed ID: 19529171 [TBL] [Abstract][Full Text] [Related]
19. Electron density characterization by use of a broadband x-ray-compatible wave-front sensor. Baker KL; Brase J; Kartz M; Olivier SS; Sawvel B; Tucker J Opt Lett; 2003 Feb; 28(3):149-51. PubMed ID: 12656314 [TBL] [Abstract][Full Text] [Related]
20. Sorting method to extend the dynamic range of the Shack-Hartmann wave-front sensor. Lee J; Shack RV; Descour MR Appl Opt; 2005 Aug; 44(23):4838-45. PubMed ID: 16114520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]