These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18079934)

  • 21. Improvement of Shack-Hartmann wave-front sensor measurement for extreme adaptive optics.
    Nicolle M; Fusco T; Rousset G; Michau V
    Opt Lett; 2004 Dec; 29(23):2743-5. PubMed ID: 15605491
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Shack-Hartmann sensor based on a cylindrical microlens array.
    Ares M; Royo S; Caum J
    Opt Lett; 2007 Apr; 32(7):769-71. PubMed ID: 17339931
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A fast modal wave-front sensor.
    Ribak E; Ebstein S
    Opt Express; 2001 Jul; 9(3):152-7. PubMed ID: 19421284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluating the effect of transmissive optic thermal lensing on laser beam quality with a shack-hartmann wave-front sensor.
    Mansell JD; Hennawi J; Gustafson EK; Fejer MM; Byer RL; Clubley D; Yoshida S; Reitze DH
    Appl Opt; 2001 Jan; 40(3):366-74. PubMed ID: 18357010
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic range expansion of a Shack-Hartmann sensor by use of a modified unwrapping algorithm.
    Pfund J; Lindlein N; Schwider J
    Opt Lett; 1998 Jul; 23(13):995-7. PubMed ID: 18087407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Validity of wave-front reconstruction and propagation of ultrabroadband pulses measured with a Hartmann-Shack sensor.
    Hauri CP; Biegert J; Keller U; Schaefer B; Mann K; Marowski G
    Opt Lett; 2005 Jun; 30(12):1563-5. PubMed ID: 16007808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental comparison of a Shack-Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications.
    Koch JA; Presta RW; Sacks RA; Zacharias RA; Bliss ES; Dailey MJ; Feldman M; Grey AA; Holdener FR; Salmon JT; Seppala LG; Toeppen JS; Van Atta L; Van Wonterghem BM; Whistler WT; Winters SE; Woods BW
    Appl Opt; 2000 Sep; 39(25):4540-6. PubMed ID: 18350042
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hierarchical wave-front sensing.
    Le Roux B; Coyne J; Ragazzoni R
    Appl Opt; 2005 Jan; 44(2):171-7. PubMed ID: 15678767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave front sensor and zonal control algorithm.
    Dayton D; Sandven S; Gonglewski J; Browne S; Rogers S; McDermott S
    Opt Express; 1997 Nov; 1(11):338-46. PubMed ID: 19377554
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fundamental performance comparison of a Hartmann and a shearing interferometer wave-front sensor.
    Welsh BM; Ellerbroek BL; Roggemann MC; Pennington TL
    Appl Opt; 1995 Jul; 34(21):4186-95. PubMed ID: 21052244
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coherent image synthesis from wave-front sensor measurements of a nonimaged laser speckle field: a laboratory demonstrations.
    Gonglewski JD; Idell PS; Voelz DG; Dayton DC; Spielbusch BK; Pierson RE
    Opt Lett; 1991 Dec; 16(23):1893-5. PubMed ID: 19784174
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large aperture tunable-focus liquid lens using shape memory alloy spring.
    Hasan N; Kim H; Mastrangelo CH
    Opt Express; 2016 Jun; 24(12):13334-42. PubMed ID: 27410350
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extension of the modal wave-front reconstruction algorithm to non-uniform illumination.
    Ma X; Mu J; Rao C; Yang J; Rao X; Tian Y
    Opt Express; 2014 Jun; 22(13):15589-98. PubMed ID: 24977817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparative study with double-exposure digital holographic interferometry and a shack-hartmann sensor to characterize transparent materials.
    Owen RB; Zozulya AA
    Appl Opt; 2002 Oct; 41(28):5891-5. PubMed ID: 12371546
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High numerical aperture Hartmann wave front sensor for extreme ultraviolet spectral range.
    Li L; Koliyadu JCP; Donnelly H; Alj D; Delmas O; Ruiz-Lopez M; de La Rochefoucauld O; Dovillaire G; Fajardo M; Zhou C; Ruan S; Dromey B; Zepf M; Zeitoun P
    Opt Lett; 2020 Aug; 45(15):4248-4251. PubMed ID: 32735269
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor.
    Zhao L; Bai N; Li X; Ong LS; Fang ZP; Asundi AK
    Appl Opt; 2006 Jan; 45(1):90-4. PubMed ID: 16422324
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wave-front sensing with a sampling field sensor.
    Tumbar R; Stack RA; Brady DJ
    Appl Opt; 2000 Jan; 39(1):72-84. PubMed ID: 18337872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shack-Hartmann multiple-beam optical tweezers.
    Rodrigo P; Eriksen R; Daria V; Glueckstad J
    Opt Express; 2003 Feb; 11(3):208-14. PubMed ID: 19461725
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design, fabrication, and testing of a Shack-Hartmann sensor with an automatic registration feature.
    Zhou W; Raasch TW; Yi AY
    Appl Opt; 2016 Oct; 55(28):7892-7899. PubMed ID: 27828021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring the power-law exponent of an atmospheric turbulence phase power spectrum with a Shack Hartmann wave-front sensor.
    Rao C; Jiang W; Ling N
    Opt Lett; 1999 Aug; 24(15):1008-10. PubMed ID: 18073923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.