BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18079981)

  • 1. Microwave Ablation With a Triaxial Antenna: Results in ex vivo Bovine Liver.
    Brace CL; Laeseke PF; van der Weide DW; Lee FT
    IEEE Trans Microw Theory Tech; 2005 Jan; 53(1):215-220. PubMed ID: 18079981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis and experimental validation of a triaxial antenna for microwave tumor ablation.
    Brace CL; van der Weide DW; Lee FT; Laeseke PF; Sampson L
    IEEE MTTS Int Microw Symp; 2004 Jun; 3(6-11):1437-1440. PubMed ID: 18079982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-slot antennas for microwave tissue heating: parametric design analysis and experimental validation.
    Brace CL
    Med Phys; 2011 Jul; 38(7):4232-40. PubMed ID: 21859025
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave ablation of ex vivo bovine tissues using a dual slot antenna with a floating metallic sleeve.
    Ibitoye AZ; Nwoye EO; Aweda AM; Oremosu AA; Anunobi CC; Akanmu NO
    Int J Hyperthermia; 2016 Dec; 32(8):923-930. PubMed ID: 27431435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficacy of Lung-Tuned Monopole Antenna for Microwave Ablation: Analytical Solution and Validation in a Ventilator-Controlled
    Chiang J; Song L; Abtin F; Rahmat-Samii Y
    IEEE J Electromagn RF Microw Med Biol; 2021 Dec; 5(4):295-304. PubMed ID: 35706532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model.
    Bedoya M; del Rio AM; Chiang J; Brace CL
    Med Phys; 2014 Dec; 41(12):123301. PubMed ID: 25471983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Directional Interstitial Antenna for Microwave Tissue Ablation: Theoretical and Experimental Investigation.
    McWilliams BT; Schnell EE; Curto S; Fahrbach TM; Prakash P
    IEEE Trans Biomed Eng; 2015 Sep; 62(9):2144-50. PubMed ID: 25794385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A minimally invasive antenna for microwave ablation therapies: design, performances, and experimental assessment.
    Cavagnaro M; Amabile C; Bernardi P; Pisa S; Tosoratti N
    IEEE Trans Biomed Eng; 2011 Apr; 58(4):949-59. PubMed ID: 21172749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential and Simultaneous 4-Antenna Microwave Ablation in an Ex Vivo Bovine Liver Model.
    Zhang TQ; Huang SM; Gu YK; Jiang XY; Huang ZM; Deng HX; Huang JH
    Cardiovasc Intervent Radiol; 2019 Oct; 42(10):1466-1474. PubMed ID: 31111174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal design of aperiodic tri-slot antennas for the conformal ablation of liver tumors using an experimentally validated MWA computer model.
    Wu C; Huang H; Liu Y; Chen L; Yu S; Moser MAJ; Zhang W; Fang Z; Zhang B
    Comput Methods Programs Biomed; 2023 Dec; 242():107799. PubMed ID: 37703699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrasting heating patterns and efficiency of the Prostatron and Targis microwave antennae for thermal treatment of benign prostatic hyperplasia.
    Larson TR; Blute ML; Tri JL; Whitlock SV
    Urology; 1998 Jun; 51(6):908-15. PubMed ID: 9609625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple-Antenna Microwave Ablation: Spatially Distributing Power Improves Thermal Profiles and Reduces Invasiveness.
    Laeseke PF; Lee FT; van der Weide DW; Brace CL
    J Interv Oncol; 2009; 2(2):65-72. PubMed ID: 21857888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Net power and energy of cooled antenna microwave ablation:ex vivo versus in vivo results in porcine liver].
    Jiang H; Fan WJ; Zhang L; Li X; Zhang JL
    Zhonghua Yi Xue Za Zhi; 2012 Sep; 92(35):2513-7. PubMed ID: 23158723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of minimally invasive directional antennas for microwave tissue ablation.
    Sebek J; Curto S; Bortel R; Prakash P
    Int J Hyperthermia; 2017 Feb; 33(1):51-60. PubMed ID: 27380439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of frequency on the performance of microwave ablation.
    Sawicki JF; Shea JD; Behdad N; Hagness SC
    Int J Hyperthermia; 2017 Feb; 33(1):61-68. PubMed ID: 27443394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An optimal sliding choke antenna for hepatic microwave ablation.
    Prakash P; Converse MC; Webster JG; Mahvi DM
    IEEE Trans Biomed Eng; 2009 Oct; 56(10):2470-6. PubMed ID: 19535312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave ablation with multiple simultaneously powered small-gauge triaxial antennas: results from an in vivo swine liver model.
    Brace CL; Laeseke PF; Sampson LA; Frey TM; van der Weide DW; Lee FT
    Radiology; 2007 Jul; 244(1):151-6. PubMed ID: 17581900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 915-MHz antenna for microwave thermal ablation treatment: physical design, computer modeling and experimental measurement.
    Pisa S; Cavagnaro M; Bernardi P; Lin JC
    IEEE Trans Biomed Eng; 2001 May; 48(5):599-601. PubMed ID: 11341534
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac tissue ablation with catheter-based microwave heating.
    Rappaport C
    Int J Hyperthermia; 2004 Nov; 20(7):769-80. PubMed ID: 15675671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of tissue deformation during radiofrequency and microwave ablation procedures: Influence of output energy delivery.
    Liu D; Brace CL
    Med Phys; 2019 Sep; 46(9):4127-4134. PubMed ID: 31260115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.