These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 1808)

  • 21. Crystal structure of tobacco necrosis virus at 2.25 A resolution.
    Oda Y; Saeki K; Takahashi Y; Maeda T; Naitow H; Tsukihara T; Fukuyama K
    J Mol Biol; 2000 Jun; 300(1):153-69. PubMed ID: 10864506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational Heterogeneity Determined by Folding and Oligomer Assembly Routes of the Interferon Response Inhibitor NS1 Protein, Unique to Human Respiratory Syncytial Virus.
    Pretel E; Sánchez IE; Fassolari M; Chemes LB; de Prat-Gay G
    Biochemistry; 2015 Aug; 54(33):5136-46. PubMed ID: 26237467
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed.
    Butler PJ
    Philos Trans R Soc Lond B Biol Sci; 1999 Mar; 354(1383):537-50. PubMed ID: 10212933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interaction and quaternary structure.
    Janin J; Bahadur RP; Chakrabarti P
    Q Rev Biophys; 2008 May; 41(2):133-80. PubMed ID: 18812015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperthermophilic l-asparaginase bypasses monomeric intermediates during folding to retain cooperativity and avoid amyloid assembly.
    Garg DK; Kundu B
    Arch Biochem Biophys; 2017 May; 622():36-46. PubMed ID: 28461187
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles.
    Atabekov J; Nikitin N; Arkhipenko M; Chirkov S; Karpova O
    J Gen Virol; 2011 Feb; 92(Pt 2):453-6. PubMed ID: 20980527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling supra-molecular helices: extension of the molecular surface recognition algorithm and application to the protein coat of the tobacco mosaic virus.
    Eisenstein M; Shariv I; Koren G; Friesem AA; Katchalski-Katzir E
    J Mol Biol; 1997 Feb; 266(1):135-43. PubMed ID: 9054976
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Model for tobacco mosaic virus assembly in vitro: specific dislocation by cooperative single-letter purine recognition and non-cooperative RNA "locking" between subunit layers].
    Midon ShE; Dobrov EN
    Mol Biol (Mosk); 1979; 13(4):769-76. PubMed ID: 470937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of tomato busy stunt virus IV. The virus particle at 2.9 A resolution.
    Olson AJ; Bricogne G; Harrison SC
    J Mol Biol; 1983 Nov; 171(1):61-93. PubMed ID: 6644820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physical mechanisms and biological significance of supramolecular protein self-assembly.
    Kentsis A; Borden KL
    Curr Protein Pept Sci; 2004 Apr; 5(2):125-34. PubMed ID: 15078223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Tailoring the Self-Assembly Behaviors of Recombinant Tobacco Mosaic Virus by Rationally Introducing Covalent Bonding at the Protein-Protein Interface.
    Zhang J; Zhou K; Wang Q
    Small; 2016 Sep; 12(36):4955-4959. PubMed ID: 27061916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the competition between aggregation and self-assembly during virus-like particle processing.
    Ding Y; Chuan YP; He L; Middelberg AP
    Biotechnol Bioeng; 2010 Oct; 107(3):550-60. PubMed ID: 20521301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional maps of the junctions between interglobular contacts and active sites in glycolytic enzymes -- a comparative analysis of the biochemical and structural data.
    Torshin IY
    Med Sci Monit; 2002 Apr; 8(4):BR123-35. PubMed ID: 11951058
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The assembly of a virus.
    Butler PJ; Klug A
    Sci Am; 1978 Nov; 239(5):62-9. PubMed ID: 734434
    [No Abstract]   [Full Text] [Related]  

  • 35. Structural symmetry and protein function.
    Goodsell DS; Olson AJ
    Annu Rev Biophys Biomol Struct; 2000; 29():105-53. PubMed ID: 10940245
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.
    Marreiros R; Müller-Schiffmann A; Bader V; Selvarajah S; Dey D; Lingappa VR; Korth C
    Virus Res; 2015 Sep; 207():155-64. PubMed ID: 25451064
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparative analyses of quaternary arrangements in homo-oligomeric proteins in superfamilies: Functional implications.
    Sudha G; Srinivasan N
    Proteins; 2016 Sep; 84(9):1190-202. PubMed ID: 27177429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The crystallographic structure of brome mosaic virus.
    Lucas RW; Larson SB; McPherson A
    J Mol Biol; 2002 Mar; 317(1):95-108. PubMed ID: 11916381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein folding kinetics: timescales, pathways and energy landscapes in terms of sequence-dependent properties.
    Veitshans T; Klimov D; Thirumalai D
    Fold Des; 1997; 2(1):1-22. PubMed ID: 9080195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural comparison of the plant satellite viruses.
    Ban N; Larson SB; McPherson A
    Virology; 1995 Dec; 214(2):571-83. PubMed ID: 8553559
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.