These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 18080301)
1. Porous beta-tricalcium phosphate/collagen composites prepared in an alkaline condition. Zou C; Weng W; Cheng K; Du P; Shen G; Han G; Guan B; Yan W J Biomed Mater Res A; 2008 Oct; 87(1):38-44. PubMed ID: 18080301 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of porous beta-tricalcium phosphate/collagen composites with an integrated structure. Zou C; Weng W; Deng X; Cheng K; Liu X; Du P; Shen G; Han G Biomaterials; 2005 Sep; 26(26):5276-84. PubMed ID: 15814125 [TBL] [Abstract][Full Text] [Related]
3. Effect of reinforcement particle size on in vitro behavior of beta-tricalcium phosphate-reinforced high-density polyethylene: a novel orthopedic composite. Homaeigohar SS; Shokrgozar MA; Javadpour J; Khavandi A; Sadi AY J Biomed Mater Res A; 2006 Jul; 78(1):129-38. PubMed ID: 16612817 [TBL] [Abstract][Full Text] [Related]
4. In vitro evaluation of biocompatibility of beta-tricalcium phosphate-reinforced high-density polyethylene; an orthopedic composite. Homaeigohar SSh; Shokrgozar MA; Sadi AY; Khavandi A; Javadpour J; Hosseinalipour M J Biomed Mater Res A; 2005 Oct; 75(1):14-22. PubMed ID: 16092112 [TBL] [Abstract][Full Text] [Related]
5. Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application. Abarrategi A; Moreno-Vicente C; Ramos V; Aranaz I; Sanz Casado JV; López-Lacomba JL Tissue Eng Part A; 2008 Aug; 14(8):1305-19. PubMed ID: 18491953 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional hierarchical composite scaffolds consisting of polycaprolactone, β-tricalcium phosphate, and collagen nanofibers: fabrication, physical properties, and in vitro cell activity for bone tissue regeneration. Yeo M; Lee H; Kim G Biomacromolecules; 2011 Feb; 12(2):502-10. PubMed ID: 21189025 [TBL] [Abstract][Full Text] [Related]
7. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
8. Novel bioactive composite bone cements based on the beta-tricalcium phosphate-monocalcium phosphate monohydrate composite cement system. Huan Z; Chang J Acta Biomater; 2009 May; 5(4):1253-64. PubMed ID: 18996779 [TBL] [Abstract][Full Text] [Related]
9. Stability and cellular responses to fluorapatite-collagen composites. Yoon BH; Kim HW; Lee SH; Bae CJ; Koh YH; Kong YM; Kim HE Biomaterials; 2005 Jun; 26(16):2957-63. PubMed ID: 15603790 [TBL] [Abstract][Full Text] [Related]
10. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. Kim HW; Kim HE; Salih V; Knowles JC J Biomed Mater Res A; 2004 Mar; 68(3):522-30. PubMed ID: 14762932 [TBL] [Abstract][Full Text] [Related]
11. Transmission electron microscopy of Ca oxide nano- and microcrystals in alpha-tricalcium phosphate prepared by sintering of beta-tricalcium phosphate. Suvorova EI; Arkharova NA; Buffat PA Micron; 2009; 40(5-6):563-70. PubMed ID: 19394236 [TBL] [Abstract][Full Text] [Related]
12. Effects of proliferation and differentiation of mesenchymal stem cells on compressive mechanical behavior of collagen/β-TCP composite scaffold. Arahira T; Todo M J Mech Behav Biomed Mater; 2014 Nov; 39():218-30. PubMed ID: 25146676 [TBL] [Abstract][Full Text] [Related]
13. Microfibrous β-TCP/collagen scaffolds mimic woven bone in structure and composition. Zhang S; Zhang X; Cai Q; Wang B; Deng X; Yang X Biomed Mater; 2010 Dec; 5(6):065005. PubMed ID: 20966533 [TBL] [Abstract][Full Text] [Related]
14. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration. Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168 [TBL] [Abstract][Full Text] [Related]
15. Beta-CaSiO3/beta-Ca3(PO4)2 composite materials for hard tissue repair: in vitro studies. Ni S; Lin K; Chang J; Chou L J Biomed Mater Res A; 2008 Apr; 85(1):72-82. PubMed ID: 17688291 [TBL] [Abstract][Full Text] [Related]
16. Growth and differentiation of mouse osteoblasts on chitosan-collagen sponges. Arpornmaeklong P; Suwatwirote N; Pripatnanont P; Oungbho K Int J Oral Maxillofac Surg; 2007 Apr; 36(4):328-37. PubMed ID: 17223012 [TBL] [Abstract][Full Text] [Related]
17. Localisation of osteogenic and osteoclastic cells in porous beta-tricalcium phosphate particles used for human maxillary sinus floor elevation. Zerbo IR; Bronckers AL; de Lange G; Burger EH Biomaterials; 2005 Apr; 26(12):1445-51. PubMed ID: 15482833 [TBL] [Abstract][Full Text] [Related]
18. Effect of beta-tricalcium phosphate particles with varying porosity on osteogenesis after sinus floor augmentation in humans. Knabe C; Koch C; Rack A; Stiller M Biomaterials; 2008 May; 29(14):2249-58. PubMed ID: 18289665 [TBL] [Abstract][Full Text] [Related]
19. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications. Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells. Shokrgozar MA; Farokhi M; Rajaei F; Bagheri MH; Azari Sh; Ghasemi I; Mottaghitalab F; Azadmanesh K; Radfar J J Biomed Mater Res A; 2010 Dec; 95(4):1074-83. PubMed ID: 20878932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]