BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 18080758)

  • 1. Nonlinear assessment of cerebral autoregulation from spontaneous blood pressure and cerebral blood flow fluctuations.
    Hu K; Peng CK; Czosnyka M; Zhao P; Novak V
    Cardiovasc Eng; 2008 Mar; 8(1):60-71. PubMed ID: 18080758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonlinear pressure-flow relationship is able to detect asymmetry of brain blood circulation associated with midline shift.
    Hu K; Lo MT; Peng CK; Novak V; Schmidt EA; Kumar A; Czosnyka M
    J Neurotrauma; 2009 Feb; 26(2):227-33. PubMed ID: 19196074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multimodal pressure-flow method to assess dynamics of cerebral autoregulation in stroke and hypertension.
    Novak V; Yang AC; Lepicovsky L; Goldberger AL; Lipsitz LA; Peng CK
    Biomed Eng Online; 2004 Oct; 3(1):39. PubMed ID: 15504235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multimodal Pressure Flow Analysis: Application of Hilbert Huang Transform in Cerebral Blood Flow Regulation.
    Lo MT; Hu K; Liu Y; Peng CK; Novak V
    EURASIP J Adv Signal Process; 2008; 2008():785243. PubMed ID: 18725996
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-correlation of instantaneous phase increments in pressure-flow fluctuations: applications to cerebral autoregulation.
    Chen Z; Hu K; Stanley HE; Novak V; Ivanov PCh
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031915. PubMed ID: 16605566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation.
    Hu X; Nenov V; Glenn TC; Steiner LA; Czosnyka M; Bergsneider M; Martin N
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):195-209. PubMed ID: 16485748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A nonlinear dynamic approach reveals a long-term stroke effect on cerebral blood flow regulation at multiple time scales.
    Hu K; Lo MT; Peng CK; Liu Y; Novak V
    PLoS Comput Biol; 2012; 8(7):e1002601. PubMed ID: 22807666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altered Phase Interactions between Spontaneous Blood Pressure and Flow Fluctuations in Type 2 Diabetes Mellitus: Nonlinear Assessment of Cerebral Autoregulation.
    Hu K; Peng CK; Huang NE; Wu Z; Lipsitz LA; Cavallerano J; Novak V
    Physica A; 2008 Apr; 387(10):2279-2292. PubMed ID: 18432311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebral autoregulation is preserved in multiple system atrophy: A transcranial Doppler study.
    Pavy-Le Traon A; Hughson RL; Thalamas C; Galitsky M; Fabre N; Rascol O; Senard JM
    Mov Disord; 2006 Dec; 21(12):2122-6. PubMed ID: 17029266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multimodality monitoring during passive tilt and Valsalva maneuver under hypercapnia.
    Hetzel A; Braune S; Guschlbauer B; Dohms K; Prasse A; Lücking CH
    J Neuroimaging; 1999 Apr; 9(2):108-12. PubMed ID: 10208109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic cerebral autoregulation assessment using an ARX model: comparative study using step response and phase shift analysis.
    Liu Y; Birch AA; Allen R
    Med Eng Phys; 2003 Oct; 25(8):647-53. PubMed ID: 12900180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study.
    Ursino M; Giulioni M; Lodi CA
    J Neurosurg; 1998 Aug; 89(2):255-66. PubMed ID: 9688121
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebral flow velocities during daily activities depend on blood pressure in patients with chronic ischemic infarctions.
    Novak V; Hu K; Desrochers L; Novak P; Caplan L; Lipsitz L; Selim M
    Stroke; 2010 Jan; 41(1):61-6. PubMed ID: 19959536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebral autoregulatory response depends on the direction of change in perfusion pressure.
    Schmidt B; Klingelhöfer J; Perkes I; Czosnyka M
    J Neurotrauma; 2009 May; 26(5):651-6. PubMed ID: 19281414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autoregulation of cerebral blood flow in orthostatic hypotension.
    Novak V; Novak P; Spies JM; Low PA
    Stroke; 1998 Jan; 29(1):104-11. PubMed ID: 9445337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of dynamic changes in cerebral autoregulation.
    Noack F; Christ M; May SA; Steinmeier R; Morgenstern U
    Biomed Tech (Berl); 2007 Feb; 52(1):31-6. PubMed ID: 17313331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multivariate system identification for cerebral autoregulation.
    Peng T; Rowley AB; Ainslie PN; Poulin MJ; Payne SJ
    Ann Biomed Eng; 2008 Feb; 36(2):308-20. PubMed ID: 18066666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive cerebrovascular autoregulation assessment in traumatic brain injury: validation and utility.
    Lang EW; Lagopoulos J; Griffith J; Yip K; Mudaliar Y; Mehdorn HM; Dorsch NW
    J Neurotrauma; 2003 Jan; 20(1):69-75. PubMed ID: 12614589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative assessment of cerebral autoregulation from transcranial Doppler pulsatility: a computer simulation study.
    Ursino M; Giulioni M
    Med Eng Phys; 2003 Oct; 25(8):655-66. PubMed ID: 12900181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase shift and correlation coefficient measurement of cerebral autoregulation during deep breathing in traumatic brain injury (TBI).
    Lewis PM; Rosenfeld JV; Diehl RR; Mehdorn HM; Lang EW
    Acta Neurochir (Wien); 2008 Feb; 150(2):139-46; discussion 146-7. PubMed ID: 18213440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.