These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 18081310)

  • 1. A quantitative index of substrate promiscuity.
    Nath A; Atkins WM
    Biochemistry; 2008 Jan; 47(1):157-66. PubMed ID: 18081310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redesign of substrate-selectivity determining modules of glutathione transferase A1-1 installs high catalytic efficiency with toxic alkenal products of lipid peroxidation.
    Nilsson LO; Gustafsson A; Mannervik B
    Proc Natl Acad Sci U S A; 2000 Aug; 97(17):9408-12. PubMed ID: 10900265
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate-assisted catalysis: molecular basis and biological significance.
    Dall'Acqua W; Carter P
    Protein Sci; 2000 Jan; 9(1):1-9. PubMed ID: 10739241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme promiscuity: mechanism and applications.
    Hult K; Berglund P
    Trends Biotechnol; 2007 May; 25(5):231-8. PubMed ID: 17379338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular signatures-based prediction of enzyme promiscuity.
    Carbonell P; Faulon JL
    Bioinformatics; 2010 Aug; 26(16):2012-9. PubMed ID: 20551137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome P450 networks in chemical space.
    Lee S; Kim D
    Arch Pharm Res; 2010 Sep; 33(9):1361-74. PubMed ID: 20945135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence of novel enzyme quasi-species depends on the substrate matrix.
    Kurtovic S; Shokeer A; Mannervik B
    J Mol Biol; 2008 Sep; 382(1):136-53. PubMed ID: 18640124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-substrate-activity space and quasi-species in enzyme evolution: Ohno's dilemma, promiscuity and functional orthogonality.
    Mannervik B; Runarsdottir A; Kurtovic S
    Biochem Soc Trans; 2009 Aug; 37(Pt 4):740-4. PubMed ID: 19614586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme Promiscuous Activity: How to Define it and its Evolutionary Aspects.
    De Luca V; Mandrich L
    Protein Pept Lett; 2020; 27(5):400-410. PubMed ID: 31868141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of highly sensitive fluorogenic substrates for glutathione S-transferase and application for activity imaging in living cells.
    Fujikawa Y; Urano Y; Komatsu T; Hanaoka K; Kojima H; Terai T; Inoue H; Nagano T
    J Am Chem Soc; 2008 Nov; 130(44):14533-43. PubMed ID: 18841967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzyme promiscuity: evolutionary and mechanistic aspects.
    Khersonsky O; Roodveldt C; Tawfik DS
    Curr Opin Chem Biol; 2006 Oct; 10(5):498-508. PubMed ID: 16939713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural determinants of glutathione transferases with azathioprine activity identified by DNA shuffling of alpha class members.
    Kurtovic S; Modén O; Shokeer A; Mannervik B
    J Mol Biol; 2008 Feb; 375(5):1365-79. PubMed ID: 18155239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. "Restoration" of glutathione transferase activity by single-site mutation of the yeast prion protein Ure2.
    Zhang ZR; Bai M; Wang XY; Zhou JM; Perrett S
    J Mol Biol; 2008 Dec; 384(3):641-51. PubMed ID: 18845158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of a novel highly specific and catalytically efficient enzyme from a naturally promiscuous glutathione transferase.
    Blikstad C; Shokeer A; Kurtovic S; Mannervik B
    Biochim Biophys Acta; 2008 Dec; 1780(12):1458-63. PubMed ID: 18706975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the cruzain S2 recognition subsite: a kinetic and binding energy calculation study.
    Polticelli F; Zaini G; Bolli A; Antonini G; Gradoni L; Ascenzi P
    Biochemistry; 2005 Mar; 44(8):2781-9. PubMed ID: 15723522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis.
    Lairson LL; Watts AG; Wakarchuk WW; Withers SG
    Nat Chem Biol; 2006 Dec; 2(12):724-8. PubMed ID: 17057723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human P450s involved in drug metabolism and the use of structural modelling for understanding substrate selectivity and binding affinity.
    Lewis DF; Ito Y
    Xenobiotica; 2009 Aug; 39(8):625-35. PubMed ID: 19514836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverging catalytic capacities and selectivity profiles with haloalkane substrates of chimeric alpha class glutathione transferases.
    Kurtovic S; Shokeer A; Mannervik B
    Protein Eng Des Sel; 2008 May; 21(5):329-41. PubMed ID: 18356169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding.
    Kilka S; Erdmann F; Migdoll A; Fischer G; Weiwad M
    Biochemistry; 2009 Mar; 48(9):1900-10. PubMed ID: 19154138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.