These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18081387)

  • 1. Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2007 Dec; 127(22):224104. PubMed ID: 18081387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solving the electron-nuclear Schrodinger equation of helium atom and its isoelectronic ions with the free iterative-complement-interaction method.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154107. PubMed ID: 18433190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solving the Schrödinger equation of helium and its isoelectronic ions with the exponential integral (Ei) function in the free iterative complement interaction method.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2008 Aug; 10(30):4486-94. PubMed ID: 18654690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method.
    Ishikawa A; Nakashima H; Nakatsuji H
    J Chem Phys; 2008 Mar; 128(12):124103. PubMed ID: 18376904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solving the electron and electron-nuclear Schrodinger equations for the excited states of helium atom with the free iterative-complement-interaction method.
    Nakashima H; Hijikata Y; Nakatsuji H
    J Chem Phys; 2008 Apr; 128(15):154108. PubMed ID: 18433191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a general method of solving the Schrödinger and dirac equations that opens a way to accurately predictive quantum chemistry.
    Nakatsuji H
    Acc Chem Res; 2012 Sep; 45(9):1480-90. PubMed ID: 22686372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solving the Schrödinger equation of atoms and molecules without analytical integration based on the free iterative-complement-interaction wave function.
    Nakatsuji H; Nakashima H; Kurokawa Y; Ishikawa A
    Phys Rev Lett; 2007 Dec; 99(24):240402. PubMed ID: 18233425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How accurately does the free complement wave function of a helium atom satisfy the Schrödinger equation?
    Nakashima H; Nakatsuji H
    Phys Rev Lett; 2008 Dec; 101(24):240406. PubMed ID: 19113607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving non-Born-Oppenheimer Schrödinger equation for hydrogen molecular ion and its isotopomers using the free complement method.
    Hijikata Y; Nakashima H; Nakatsuji H
    J Chem Phys; 2009 Jan; 130(2):024102. PubMed ID: 19154014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-complement local-Schrödinger-equation method for solving the Schrödinger equation of atoms and molecules: basic theories and features.
    Nakatsuji H; Nakashima H
    J Chem Phys; 2015 Feb; 142(8):084117. PubMed ID: 25725722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variational solution of the Schrödinger equation using plane waves in adaptive coordinates: The radial case.
    Pérez-Jordá JM
    J Chem Phys; 2010 Jan; 132(2):024110. PubMed ID: 20095666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate Scaling Functions of the Scaled Schrödinger Equation. II. Variational Examination of the Correct Scaling Functions with the Free Complement Theory Applied to the Helium Atom.
    Nakatsuji H; Nakashima H
    J Chem Theory Comput; 2024 May; 20(9):3749-3765. PubMed ID: 38683950
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inversion of radial distribution functions to pair forces by solving the Yvon-Born-Green equation iteratively.
    Cho HM; Chu JW
    J Chem Phys; 2009 Oct; 131(13):134107. PubMed ID: 19814543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of Coulomb wave function discrete variable representation to atomic systems in strong laser fields.
    Peng LY; Starace AF
    J Chem Phys; 2006 Oct; 125(15):154311. PubMed ID: 17059259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the Schrödinger equation of hydrogen molecule with the free complement-local Schrödinger equation method: Potential energy curves of the ground and singly excited singlet and triplet states, Σ, Π, Δ, and Φ.
    Nakashima H; Nakatsuji H
    J Chem Phys; 2018 Dec; 149(24):244116. PubMed ID: 30599736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An analysis of the accuracy of an initial value representation surface hopping wave function in the interaction and asymptotic regions.
    Sergeev A; Herman MF
    J Chem Phys; 2006 Jul; 125(2):24107. PubMed ID: 16848577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2018 Sep; 149(11):114105. PubMed ID: 30243277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.
    Temel B; Mills G; Metiu H
    J Phys Chem A; 2008 Mar; 112(12):2728-37. PubMed ID: 18303864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving the Schrödinger equation of the hydrogen molecule with the free-complement variational theory: essentially exact potential curves and vibrational levels of the ground and excited states of Π symmetry.
    Kurokawa YI; Nakashima H; Nakatsuji H
    Phys Chem Chem Phys; 2020 Jun; 22(24):13489-13497. PubMed ID: 32529196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate scaling functions of the scaled Schrödinger equation.
    Nakatsuji H; Nakashima H; Kurokawa YI
    J Chem Phys; 2022 Jan; 156(1):014113. PubMed ID: 34998320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.