These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 18081421)

  • 1. Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane.
    Xie Y; Kong Y; Soh AK; Gao H
    J Chem Phys; 2007 Dec; 127(22):225101. PubMed ID: 18081421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study on DNA oligonucleotide translocation through carbon nanotubes.
    Pei QX; Lim CG; Cheng Y; Gao H
    J Chem Phys; 2008 Sep; 129(12):125101. PubMed ID: 19045062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity of polymer translocation through a pore.
    Kejian D; Furu Z; Dongqin C; Zengliang Y
    Biochem Biophys Res Commun; 2006 Mar; 341(1):139-42. PubMed ID: 16414016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled transport of DNA through a Y-shaped carbon nanotube in a solid membrane.
    Luan B; Zhou B; Huynh T; Zhou R
    Nanoscale; 2014 Oct; 6(19):11479-83. PubMed ID: 25154639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loosening the DNA wrapping around single-walled carbon nanotubes by increasing the strand length.
    Yang QH; Wang Q; Gale N; Oton CJ; Cui L; Nandhakumar IS; Zhu Z; Tang Z; Brown T; Loh WH
    Nanotechnology; 2009 May; 20(19):195603. PubMed ID: 19420642
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static and alternating electric field and distance-dependent effects on carbon nanotube-assisted water self-diffusion across lipid membranes.
    Garate JA; English NJ; MacElroy JM
    J Chem Phys; 2009 Sep; 131(11):114508. PubMed ID: 19778130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic response properties of carbon nanotubes in magnetic fields.
    Sebastiani D; Kudin KN
    ACS Nano; 2008 Apr; 2(4):661-8. PubMed ID: 19206596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electric field and temperature effects on water in the narrow nonpolar pores of carbon nanotubes.
    Vaitheeswaran S; Rasaiah JC; Hummer G
    J Chem Phys; 2004 Oct; 121(16):7955-65. PubMed ID: 15485258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of the carbon nanotube on the structural and dynamical properties of cholesterol cluster.
    Raczyński P; Dawid A; Sokół M; Gburski Z
    Biomol Eng; 2007 Nov; 24(5):572-6. PubMed ID: 17977066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alignment dynamics of single-walled carbon nanotubes in pulsed ultrahigh magnetic fields.
    Shaver J; Parra-Vasquez AN; Hansel S; Portugall O; Mielke CH; von Ortenberg M; Hauge RH; Pasquali M; Kono J
    ACS Nano; 2009 Jan; 3(1):131-8. PubMed ID: 19206259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of unidirectional transport of single-file water molecules through carbon nanotubes in an electric field.
    Su J; Guo H
    ACS Nano; 2011 Jan; 5(1):351-9. PubMed ID: 21162530
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic ion selectivity of narrow hydrophobic pores.
    Song C; Corry B
    J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How does a carbon nanotube grow? An in situ investigation on the cap evolution.
    Jin C; Suenaga K; Iijima S
    ACS Nano; 2008 Jun; 2(6):1275-9. PubMed ID: 19206345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrathin carbon nanotube-DNA hybrid membrane formation by simple physical adsorption onto a thin alumina substrate.
    Guo M; Lv W; Zhang S; Jin FM; Wang Q; Ling GW; Yang QH
    Nanotechnology; 2010 Jul; 21(28):285601. PubMed ID: 20562483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension.
    Tsyboulski DA; Bachilo SM; Kolomeisky AB; Weisman RB
    ACS Nano; 2008 Sep; 2(9):1770-6. PubMed ID: 19206415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of a carbon nanotube ultracapacitor.
    Orphanou A; Yamada T; Yang CY
    Nanotechnology; 2012 Mar; 23(9):095401. PubMed ID: 22322202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational design and multiscale modeling of a nanoactuator using DNA actuation.
    Hamdi M
    Nanotechnology; 2009 Dec; 20(48):485501. PubMed ID: 19880974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon nanotube-enhanced cell electropermeabilisation.
    Raffa V; Ciofani G; Vittorio O; Pensabene V; Cuschieri A
    Bioelectrochemistry; 2010 Aug; 79(1):136-41. PubMed ID: 19926536
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving the electrical conductivity of carbon nanotube networks: a first-principles study.
    Li EY; Marzari N
    ACS Nano; 2011 Dec; 5(12):9726-36. PubMed ID: 22059779
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.