BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18081844)

  • 1. Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria.
    Coupland K; Johnson DB
    FEMS Microbiol Lett; 2008 Feb; 279(1):30-5. PubMed ID: 18081844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics.
    Johnson DB; Okibe N; Roberto FF
    Arch Microbiol; 2003 Jul; 180(1):60-8. PubMed ID: 12802481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferrimicrobium acidiphilum gen. nov., sp. nov. and Ferrithrix thermotolerans gen. nov., sp. nov.: heterotrophic, iron-oxidizing, extremely acidophilic actinobacteria.
    Johnson DB; Bacelar-Nicolau P; Okibe N; Thomas A; Hallberg KB
    Int J Syst Evol Microbiol; 2009 May; 59(Pt 5):1082-9. PubMed ID: 19406797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfidogenesis in low pH (3.8-4.2) media by a mixed population of acidophilic bacteria.
    Kimura S; Hallberg KB; Johnson DB
    Biodegradation; 2006 Mar; 17(2):159-67. PubMed ID: 16456614
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dissimilatory ferrous iron oxidation at a low pH: a novel trait identified in the bacterial subclass Rubrobacteridae.
    Bryan CG; Johnson DB
    FEMS Microbiol Lett; 2008 Nov; 288(2):149-55. PubMed ID: 18803673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron and carbon metabolism by a mineral-oxidizing Alicyclobacillus-like bacterium.
    Yahya A; Hallberg KB; Johnson DB
    Arch Microbiol; 2008 Apr; 189(4):305-12. PubMed ID: 18004545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of ferric iron by acidophilic heterotrophic bacteria: evidence for constitutive and inducible enzyme systems in Acidiphilium spp.
    Johnson DB; Bridge TA
    J Appl Microbiol; 2002; 92(2):315-21. PubMed ID: 11849360
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ferric iron reduction by acidophilic heterotrophic bacteria.
    Johnson DB; McGinness S
    Appl Environ Microbiol; 1991 Jan; 57(1):207-11. PubMed ID: 16348395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron respiration by Acidiphilium cryptum at pH 5.
    Bilgin AA; Silverstein J; Jenkins JD
    FEMS Microbiol Ecol; 2004 Jul; 49(1):137-43. PubMed ID: 19712391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine.
    Johnson DB; Rolfe S; Hallberg KB; Iversen E
    Environ Microbiol; 2001 Oct; 3(10):630-7. PubMed ID: 11722543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
    Kappler A; Benz M; Schink B; Brune A
    FEMS Microbiol Ecol; 2004 Jan; 47(1):85-92. PubMed ID: 19712349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A modular continuous flow reactor system for the selective bio-oxidation of iron and precipitation of schwertmannite from mine-impacted waters.
    Hedrich S; Johnson DB
    Bioresour Technol; 2012 Feb; 106():44-9. PubMed ID: 22197072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schwertmannite formation adjacent to bacterial cells in a mine water treatment plant and in pure cultures of Ferrovum myxofaciens.
    Hedrich S; Lünsdorf H; Kleeberg R; Heide G; Seifert J; Schlömann M
    Environ Sci Technol; 2011 Sep; 45(18):7685-92. PubMed ID: 21838259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits.
    Jones RM; Hedrich S; Johnson DB
    Extremophiles; 2013 Sep; 17(5):841-50. PubMed ID: 23884710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.
    Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB
    Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecophysiology of Fe-cycling bacteria in acidic sediments.
    Lu S; Gischkat S; Reiche M; Akob DM; Hallberg KB; Küsel K
    Appl Environ Microbiol; 2010 Dec; 76(24):8174-83. PubMed ID: 20971876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Bioshrouding": a novel approach for securing reactive mineral tailings.
    Johnson DB; Yajie L; Okibe N
    Biotechnol Lett; 2008 Mar; 30(3):445-9. PubMed ID: 17975731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Characterization and heavy metal adsorption properties of schwertmannite synthesized by bacterial oxidation of ferrous sulfate solutions].
    Zhou SG; Zhou LX; Chen FX
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Feb; 27(2):367-70. PubMed ID: 17514978
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of ferrous iron oxidation by Leptospirillum bacteria in continuous cultures.
    van Scherpenzeel DA; Boon M; Ras C; Hansford GS; Heijnen JJ
    Biotechnol Prog; 1998; 14(3):425-33. PubMed ID: 9622523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.