These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 18081844)

  • 21. Continuous biological ferrous iron oxidation in a submerged membrane bioreactor.
    Park D; Lee DS; Park JM
    Water Sci Technol; 2005; 51(6-7):59-68. PubMed ID: 16003962
    [TBL] [Abstract][Full Text] [Related]  

  • 22. New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes.
    Falagán C; Sánchez-España J; Johnson DB
    FEMS Microbiol Ecol; 2014 Jan; 87(1):231-43. PubMed ID: 24102574
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of ferric iron generation by different species of acidophilic bacteria immobilized in packed-bed reactors.
    Rowe OF; Johnson DB
    Syst Appl Microbiol; 2008 Mar; 31(1):68-77. PubMed ID: 17983721
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Isolation and characterization of acidophilic heterotrophic iron-oxidizing bacterium from enrichment culture obtained from acid mine drainage treatment plant.
    Joe SJ; Suto K; Inoie C; Chida T
    J Biosci Bioeng; 2007 Aug; 104(2):117-23. PubMed ID: 17884656
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria.
    Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L
    Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial oxidation of ferrous iron at low temperatures.
    Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH
    Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite.
    Burton ED; Johnston SG; Kraal P; Bush RT; Claff S
    Environ Sci Technol; 2013 Mar; 47(5):2221-9. PubMed ID: 23373718
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaching of petroleum refinery ash by acidophilic sulfur-oxidizing microbial cultures.
    Moura MJ; Ribeiro B; Sousa J; Costa-Ferreira M
    Bioresour Technol; 2008 Dec; 99(18):8840-3. PubMed ID: 18538565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Isolation, identification and arsenic-resistance of Acidithiobacillus ferrooxidans HX3 producing schwertmannite.
    Xu Y; Yang M; Yao T; Xiong H
    J Environ Sci (China); 2014 Jul; 26(7):1463-70. PubMed ID: 25079995
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Carbon, iron and sulfur metabolism in acidophilic micro-organisms.
    Barrie Johnson D; Hallberg KB
    Adv Microb Physiol; 2009; 54():201-55. PubMed ID: 18929069
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The significance of pH in dictating the relative toxicities of chloride and copper to acidophilic bacteria.
    Falagán C; Johnson DB
    Res Microbiol; 2018 Dec; 169(10):552-557. PubMed ID: 30031071
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acidisoma tundrae gen. nov., sp. nov. and Acidisoma sibiricum sp. nov., two acidophilic, psychrotolerant members of the Alphaproteobacteria from acidic northern wetlands.
    Belova SE; Pankratov TA; Detkova EN; Kaparullina EN; Dedysh SN
    Int J Syst Evol Microbiol; 2009 Sep; 59(Pt 9):2283-90. PubMed ID: 19620354
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enrichment and isolation of iron-oxidizing bacteria at neutral pH.
    Emerson D; Floyd MM
    Methods Enzymol; 2005; 397():112-23. PubMed ID: 16260287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transformation of vivianite by anaerobic nitrate-reducing iron-oxidizing bacteria.
    Miot J; Benzerara K; Morin G; Bernard S; Beyssac O; Larquet E; Kappler A; Guyot F
    Geobiology; 2009 Jun; 7(3):373-84. PubMed ID: 19573166
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Mechanism of the oxidation of divalent iron and manganese by iron bacteria developing in a neutral acidic medium].
    Dubinina GA
    Mikrobiologiia; 1978; 47(4):591-9. PubMed ID: 30022
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mineral and iron oxidation at low temperatures by pure and mixed cultures of acidophilic microorganisms.
    Dopson M; Halinen AK; Rahunen N; Ozkaya B; Sahinkaya E; Kaksonen AH; Lindström EB; Puhakka JA
    Biotechnol Bioeng; 2007 Aug; 97(5):1205-15. PubMed ID: 17187443
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetics of metal resistance in acidophilic prokaryotes of acidic mine environments.
    Banerjee PC
    Indian J Exp Biol; 2004 Jan; 42(1):9-25. PubMed ID: 15274476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox Transformations of Iron at Extremely Low pH: Fundamental and Applied Aspects.
    Johnson DB; Kanao T; Hedrich S
    Front Microbiol; 2012; 3():96. PubMed ID: 22438853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium.
    Falagán C; Johnson DB
    Extremophiles; 2014 Nov; 18(6):1067-73. PubMed ID: 25116055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.