These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

377 related articles for article (PubMed ID: 18081885)

  • 1. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O; Goret L; Caillaud C; Mercier J; Obert P; Candau R; Py G
    Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers.
    Roels B; Thomas C; Bentley DJ; Mercier J; Hayot M; Millet G
    J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial ATP production rate in 55 to 73-year-old men: effect of endurance training.
    Berthon P; Freyssenet D; Chatard JC; Castells J; Mujika I; Geyssant A; Guezennec CY; Denis C
    Acta Physiol Scand; 1995 Jun; 154(2):269-74. PubMed ID: 7572222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.
    Zoladz JA; Koziel A; Broniarek I; Woyda-Ploszczyca AM; Ogrodna K; Majerczak J; Celichowski J; Szkutnik Z; Jarmuszkiewicz W
    PLoS One; 2017; 12(12):e0189456. PubMed ID: 29232696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dietary soya protein intake and exercise training have an additive effect on skeletal muscle fatty acid oxidation enzyme activities and mRNA levels in rats.
    Morifuji M; Sanbongi C; Sugiura K
    Br J Nutr; 2006 Sep; 96(3):469-75. PubMed ID: 16925851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle changes after endurance training at high altitude.
    Bigard AX; Brunet A; Guezennec CY; Monod H
    J Appl Physiol (1985); 1991 Dec; 71(6):2114-21. PubMed ID: 1778900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.
    Malgoyre A; Chabert C; Tonini J; Koulmann N; Bigard X; Sanchez H
    J Appl Physiol (1985); 2017 Mar; 122(3):666-674. PubMed ID: 28035013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive UCP3 overexpression at physiological levels increases mouse skeletal muscle capacity for fatty acid transport and oxidation.
    Bezaire V; Spriet LL; Campbell S; Sabet N; Gerrits M; Bonen A; Harper ME
    FASEB J; 2005 Jun; 19(8):977-9. PubMed ID: 15814607
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial long chain fatty acid oxidation, fatty acid translocase/CD36 content and carnitine palmitoyltransferase I activity in human skeletal muscle during aerobic exercise.
    Holloway GP; Bezaire V; Heigenhauser GJ; Tandon NN; Glatz JF; Luiken JJ; Bonen A; Spriet LL
    J Physiol; 2006 Feb; 571(Pt 1):201-10. PubMed ID: 16357012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of diet and training on endurance performance in rats.
    Lee JS; Bruce CR; Spriet LL; Hawley JA
    Exp Physiol; 2001 Jul; 86(4):499-508. PubMed ID: 11445829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens.
    Yeo WK; Paton CD; Garnham AP; Burke LM; Carey AL; Hawley JA
    J Appl Physiol (1985); 2008 Nov; 105(5):1462-70. PubMed ID: 18772325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content.
    Bruce CR; Thrush AB; Mertz VA; Bezaire V; Chabowski A; Heigenhauser GJ; Dyck DJ
    Am J Physiol Endocrinol Metab; 2006 Jul; 291(1):E99-E107. PubMed ID: 16464906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Alterations in enzymes involved in fat metabolism after acute and chronic altitude exposure.
    Kennedy SL; Stanley WC; Panchal AR; Mazzeo RS
    J Appl Physiol (1985); 2001 Jan; 90(1):17-22. PubMed ID: 11133888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-duration intermittent hypoxia enhances endurance capacity by improving muscle fatty acid metabolism in mice.
    Suzuki J
    Physiol Rep; 2016 Apr; 4(7):. PubMed ID: 27044851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of endurance training under hypoxic condition on oxidative enzyme activity in rat skeletal muscle.
    Takahashi H; Asano K; Nakayama H
    Appl Human Sci; 1996 May; 15(3):111-4. PubMed ID: 8718823
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acyl-coenzyme A binding protein expression is fibre-type specific in rat skeletal muscle but not affected by moderate endurance training.
    Franch J; Andersen JL; Jensen J; Pedersen PK; Knudsen J
    Pflugers Arch; 2002 Jan; 443(3):387-93. PubMed ID: 11810207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers.
    Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A
    J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcineurin is not involved in some mitochondrial enzyme adaptations to endurance exercise training in rat skeletal muscle.
    Terada S; Nakagawa H; Nakamura Y; Muraoka I
    Eur J Appl Physiol; 2003 Sep; 90(1-2):210-7. PubMed ID: 12856186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans.
    Pesta D; Hoppel F; Macek C; Messner H; Faulhaber M; Kobel C; Parson W; Burtscher M; Schocke M; Gnaiger E
    Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1078-87. PubMed ID: 21775647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-Carnitine enhances exercise endurance capacity by promoting muscle oxidative metabolism in mice.
    Kim JH; Pan JH; Lee ES; Kim YJ
    Biochem Biophys Res Commun; 2015 Aug; 464(2):568-73. PubMed ID: 26164228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.