These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 18082150)
1. Detection of local polarity and conformational changes at the active site of rabbit muscle creatine kinase with a new arginine-specific fluorescent probe. Wang S; Wang X; Shi W; Wang K; Ma H Biochim Biophys Acta; 2008 Feb; 1784(2):415-22. PubMed ID: 18082150 [TBL] [Abstract][Full Text] [Related]
2. Characterization of local polarity and structure of Cys121 domain in beta-lactoglobulin with a new thiol-specific fluorescent probe. Wang X; Wang S; Ma H Analyst; 2008 Apr; 133(4):478-84. PubMed ID: 18365117 [TBL] [Abstract][Full Text] [Related]
3. New approach for local structure analysis of the tyrosine domain in proteins by using a site-specific and polarity-sensitive fluorescent probe. Chen S; Li X; Ma H Chembiochem; 2009 May; 10(7):1200-7. PubMed ID: 19360805 [TBL] [Abstract][Full Text] [Related]
4. Detection of local polarity of alpha-lactalbumin by N-terminal specific labeling with a new tailor-made fluorescent probe. Dong SY; Ma HM; Duan XJ; Chen XQ; Li J J Proteome Res; 2005; 4(1):161-6. PubMed ID: 15707371 [TBL] [Abstract][Full Text] [Related]
5. Recognition of thymine by triazine fluorescent probe through intermolecular multiple hydrogen bonding. Nie L; Ma H; Li X; Sun M; Xiong S Biopolymers; 2003; 72(4):274-81. PubMed ID: 12833482 [TBL] [Abstract][Full Text] [Related]
6. Characterization of local polarity and hydrophobic binding sites of beta-lactoglobulin by using N-terminal specific fluorescence labeling. Dong SY; Zhao ZW; Ma HM J Proteome Res; 2006 Jan; 5(1):26-31. PubMed ID: 16396492 [TBL] [Abstract][Full Text] [Related]
7. Activity and function of rabbit muscle-specific creatine kinase at low temperature by mutation at gly268 to asn268. Wu CL; Li YH; Lin HC; Yeh YH; Yan HY; Hsiao CD; Hui CF; Wu JL Comp Biochem Physiol B Biochem Mol Biol; 2011 Mar; 158(3):189-98. PubMed ID: 21130895 [TBL] [Abstract][Full Text] [Related]
8. Analysis of local polarity change around Cys34 in bovine serum albumin during N-->B transition by a polarity-sensitive fluorescence probe. Wang X; Guo L; Ma H Spectrochim Acta A Mol Biomol Spectrosc; 2009 Sep; 73(5):875-8. PubMed ID: 19451019 [TBL] [Abstract][Full Text] [Related]
9. Two fused proteins combining Stichopus japonicus arginine kinase and rabbit muscle creatine kinase. Zhang JW; Guo Q; Zhao TJ; Liu TT; Wang XC Biochemistry (Mosc); 2006 Sep; 71(9):983-8. PubMed ID: 17009952 [TBL] [Abstract][Full Text] [Related]
10. The activity of carp muscle-specific creatine kinase at low temperature is enhanced by decreased hydrophobicity of residue 268. Wu CL; Li BY; Wu JL; Hui CF Physiol Biochem Zool; 2014; 87(4):507-16. PubMed ID: 24940915 [TBL] [Abstract][Full Text] [Related]
11. Conformational changes at the active site of creatine kinase at low concentrations of guanidinium chloride. Zhou HM; Zhang XH; Yin Y; Tsou CL Biochem J; 1993 Apr; 291 ( Pt 1)(Pt 1):103-7. PubMed ID: 8471027 [TBL] [Abstract][Full Text] [Related]
12. Interactions of L-Arg with calf thymus DNA using neutral red dye as a fluorescence probe. Lin J; Liu R; Gao C Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():532-5. PubMed ID: 22842133 [TBL] [Abstract][Full Text] [Related]
13. Effects of osmolytes on Pelodiscus sinensis creatine kinase: a study on thermal denaturation and aggregation. Wang W; Lee J; Jin QX; Fang NY; Si YX; Yin SJ; Qian GY; Park YD Int J Biol Macromol; 2013 Sep; 60():277-87. PubMed ID: 23791661 [TBL] [Abstract][Full Text] [Related]
14. Conformational dynamics of the GdmHCl-induced molten globule state of creatine kinase monitored by hydrogen exchange and mass spectrometry. Mazon H; Marcillat O; Forest E; Smith DL; Vial C Biochemistry; 2004 May; 43(17):5045-54. PubMed ID: 15109263 [TBL] [Abstract][Full Text] [Related]
15. The conformational change of rabbit muscle pyruvate kinase induced by activating cations and its substrates. Ou Y; Tao W; Zhang Y; Wu G; Yu S Int J Biol Macromol; 2010 Aug; 47(2):228-32. PubMed ID: 20435056 [TBL] [Abstract][Full Text] [Related]
16. Creatine kinase: essential arginine residues at the nucleotide binding site identified by chemical modification and high-resolution tandem mass spectrometry. Wood TD; Guan Z; Borders CL; Chen LH; Kenyon GL; McLafferty FW Proc Natl Acad Sci U S A; 1998 Mar; 95(7):3362-5. PubMed ID: 9520370 [TBL] [Abstract][Full Text] [Related]
17. Engineering a switch-based biosensor for arginine using a Thermotoga maritima periplasmic binding protein. Donaldson T; Iozzino L; Deacon LJ; Billones H; Ausili A; D'Auria S; Dattelbaum JD Anal Biochem; 2017 May; 525():60-66. PubMed ID: 28259516 [TBL] [Abstract][Full Text] [Related]
18. Dynamic asymmetry and the role of the conserved active-site thiol in rabbit muscle creatine kinase. Londergan CH; Baskin R; Bischak CG; Hoffman KW; Snead DM; Reynoso C Biochemistry; 2015 Jan; 54(1):83-95. PubMed ID: 25347386 [TBL] [Abstract][Full Text] [Related]
19. Despite its high similarity with monomeric arginine kinase, muscle creatine kinase is only enzymatically active as a dimer. Awama AM; Mazon H; Vial C; Marcillat O Arch Biochem Biophys; 2007 Feb; 458(2):158-66. PubMed ID: 17239811 [TBL] [Abstract][Full Text] [Related]
20. Conformational heterogeneity of creatine kinase determined from phase resolved fluorometry. Grossman SH Biophys J; 1991 Mar; 59(3):590-7. PubMed ID: 2049520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]