These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18082174)

  • 1. Investigation on the assembled structure-property correlation of supramolecular hydrogel formed from low-molecular-weight gelator.
    Wang Y; Tang L; Yu J
    J Colloid Interface Sci; 2008 Mar; 319(1):357-64. PubMed ID: 18082174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of supramolecular hydrogels with controlled microstructures and stability via molecular assembling in a two-component system.
    Wu J; Tang L; Chen K; Yan L; Li F; Wang Y
    J Colloid Interface Sci; 2007 Mar; 307(1):280-7. PubMed ID: 17141263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles: entrapment and release of cytochrome c and vitamin B12.
    Shome A; Debnath S; Das PK
    Langmuir; 2008 Apr; 24(8):4280-8. PubMed ID: 18324868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entrapment and release of quinoline derivatives using a hydrogel of a low molecular weight gelator.
    Friggeri A; Feringa BL; van Esch J
    J Control Release; 2004 Jun; 97(2):241-8. PubMed ID: 15196751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel low-molecular-mass gelator with a redox active ferrocenyl group: tuning gel formation by oxidation.
    Liu J; Yan J; Yuan X; Liu K; Peng J; Fang Y
    J Colloid Interface Sci; 2008 Feb; 318(2):397-404. PubMed ID: 18005977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelastic and fractal characteristics of a supramolecular hydrogel hybridized with clay nanoparticles.
    Song F; Zhang LM; Shi JF; Li NN
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):486-91. PubMed ID: 20709503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photo gel-sol/sol-gel transition and its patterning of a supramolecular hydrogel as stimuli-responsive biomaterials.
    Matsumoto S; Yamaguchi S; Ueno S; Komatsu H; Ikeda M; Ishizuka K; Iko Y; Tabata KV; Aoki H; Ito S; Noji H; Hamachi I
    Chemistry; 2008; 14(13):3977-86. PubMed ID: 18335444
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.
    Hirst AR; Escuder B; Miravet JF; Smith DK
    Angew Chem Int Ed Engl; 2008; 47(42):8002-18. PubMed ID: 18825737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoengineering of a biocompatible organogel by thermal processing.
    Li JL; Wang RY; Liu XY; Pan HH
    J Phys Chem B; 2009 Apr; 113(15):5011-5. PubMed ID: 19309102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular recognition through divalent interactions with a self-assembled fibrillar network of a supramolecular organogel.
    Escuder B; Miravet JF; Sáez JA
    Org Biomol Chem; 2008 Dec; 6(23):4378-83. PubMed ID: 19005597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pH and thermo-responsive chiral hydrogel for stimulated release.
    Shankar BV; Patnaik A
    J Phys Chem B; 2007 Aug; 111(31):9294-300. PubMed ID: 17629325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-component hydrogels comprising fatty acids and amines: structure, properties, and application as a template for the synthesis of metal nanoparticles.
    Basit H; Pal A; Sen S; Bhattacharya S
    Chemistry; 2008; 14(21):6534-45. PubMed ID: 18537217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer from a fluorescent hydrogel to a hosted fluorophore.
    Montalti M; Dolci LS; Prodi L; Zaccheroni N; Stuart MC; van Bommel KJ; Friggeri A
    Langmuir; 2006 Feb; 22(5):2299-303. PubMed ID: 16489821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and properties of an exceptional low molecular weight hydrogelator.
    Bieser AM; Tiller JC
    J Phys Chem B; 2007 Nov; 111(46):13180-7. PubMed ID: 17973518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Switchable performance of an L-proline-derived basic catalyst controlled by supramolecular gelation.
    Rodríguez-Llansola F; Escuder B; Miravet JF
    J Am Chem Soc; 2009 Aug; 131(32):11478-84. PubMed ID: 19459635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cross-linking molecular weights in a hyaluronic acid-poly(ethylene oxide) hydrogel network on its properties.
    Noh I; Kim GW; Choi YJ; Kim MS; Park Y; Lee KB; Kim IS; Hwang SJ; Tae G
    Biomed Mater; 2006 Sep; 1(3):116-23. PubMed ID: 18458391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insight on the NMR study of supramolecular gels and its application to monitor molecular recognition on self-assembled fibers.
    Escuder B; LLusar M; Miravet JF
    J Org Chem; 2006 Sep; 71(20):7747-52. PubMed ID: 16995682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chloroalkane gel formations by tris-urea low molecular weight gelator under various conditions.
    Yamanaka M; Fujii H
    J Org Chem; 2009 Aug; 74(15):5390-4. PubMed ID: 19552375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of molecular structure on the properties of naphthalene-dipeptide hydrogelators.
    Chen L; Revel S; Morris K; C Serpell L; Adams DJ
    Langmuir; 2010 Aug; 26(16):13466-71. PubMed ID: 20695592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of supramolecular hydrogel microspheres via microfluidics.
    Chen W; Yang Y; Rinadi C; Zhou D; Shen AQ
    Lab Chip; 2009 Oct; 9(20):2947-51. PubMed ID: 19789748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.