BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 18082385)

  • 1. Developing an environmentally benign process for the production of microparticles: amphiphilic crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):72-82. PubMed ID: 18082385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of salmeterol xinafoate microparticle production by conventional and novel antisolvent crystallization.
    Murnane D; Marriott C; Martin GP
    Eur J Pharm Biopharm; 2008 May; 69(1):94-105. PubMed ID: 17981448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polymorphic control of inhalation microparticles prepared by crystallization.
    Murnane D; Marriott C; Martin GP
    Int J Pharm; 2008 Sep; 361(1-2):141-9. PubMed ID: 18582548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dry powder formulations for inhalation of fluticasone propionate and salmeterol xinafoate microcrystals.
    Murnane D; Martin GP; Marriott C
    J Pharm Sci; 2009 Feb; 98(2):503-15. PubMed ID: 18506819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adhesion and redistribution of salmeterol xinafoate particles in sugar-based mixtures for inhalation.
    Adi H; Larson I; Stewart PJ
    Int J Pharm; 2007 Jun; 337(1-2):229-38. PubMed ID: 17303354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
    Bakhbakhi Y; Charpentier PA; Rohani S
    Int J Pharm; 2006 Feb; 309(1-2):71-80. PubMed ID: 16412594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigations into the formulation of metered dose inhalers of salmeterol xinafoate and fluticasone propionate microcrystals.
    Murnane D; Martin GP; Marriott C
    Pharm Res; 2008 Oct; 25(10):2283-91. PubMed ID: 18509598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of phenytoin nanoparticles using rapid expansion of supercritical solution with solid cosolvent (RESS-SC) process.
    Thakur R; Gupta RB
    Int J Pharm; 2006 Feb; 308(1-2):190-9. PubMed ID: 16352406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agglomerate properties and dispersibility changes of salmeterol xinafoate from powders for inhalation after storage at high relative humidity.
    Das S; Larson I; Young P; Stewart P
    Eur J Pharm Sci; 2009 Jun; 37(3-4):442-50. PubMed ID: 19491036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microparticle size control and glimepiride microencapsulation using spray congealing technology.
    Ilić I; Dreu R; Burjak M; Homar M; Kerc J; Srcic S
    Int J Pharm; 2009 Nov; 381(2):176-83. PubMed ID: 19446625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of formulation variables on the characteristics of insulin-loaded poly(lactic-co-glycolic acid) microspheres prepared by a single phase oil in oil solvent evaporation method.
    Hamishehkar H; Emami J; Najafabadi AR; Gilani K; Minaiyan M; Mahdavi H; Nokhodchi A
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):340-9. PubMed ID: 19717287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of the polydispersity of the added fine lactose on the dispersion of salmeterol xinafoate from mixtures for inhalation.
    Handoko A; Ian L; Peter SJ
    Eur J Pharm Sci; 2009 Feb; 36(2-3):265-74. PubMed ID: 18996188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of particle size and preparation methods on the physical and chemical stability of amorphous simvastatin.
    Zhang F; Aaltonen J; Tian F; Saville DJ; Rades T
    Eur J Pharm Biopharm; 2009 Jan; 71(1):64-70. PubMed ID: 18703139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent.
    Mok H; Park TG
    Eur J Pharm Biopharm; 2008 Sep; 70(1):137-44. PubMed ID: 18515053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of spherical iron(II) sulfate heptahydrate-containing solid particles with sustained drug release.
    Szabó-Révész P; Farkas B; Gregor T; Nagy K; Pallagi E
    Eur J Pharm Biopharm; 2007 May; 66(2):193-9. PubMed ID: 17125982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous production and co-mixing of microparticles of nevirapine with excipients by supercritical antisolvent method for dissolution enhancement.
    Sanganwar GP; Sathigari S; Babu RJ; Gupta RB
    Eur J Pharm Sci; 2010 Jan; 39(1-3):164-74. PubMed ID: 19961931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative study of crystallization processes in case of glycine crystallization].
    Aigner Z; Szegedi A; Szabadi V; Ambrus R; Sovány T; Szabóné Révész P
    Acta Pharm Hung; 2012; 82(2):61-8. PubMed ID: 22870778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization of progesterone for pulmonary drug delivery.
    Ragab D; Rohani S; Samaha MW; El-Khawas FM; El-Maradny HA
    J Pharm Sci; 2010 Mar; 99(3):1123-37. PubMed ID: 19691108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.