BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18082866)

  • 1. Application of fluorescence in situ hybridization technique to detect simazine-degrading bacteria in soil samples.
    Martín M; Gibello A; Lobo C; Nande M; Garbi C; Fajardo C; Barra-Caracciolo A; Grenni P; Martínez-Iñigo MJ
    Chemosphere; 2008 Mar; 71(4):703-10. PubMed ID: 18082866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simazine biodegradation in soil: analysis of bacterial community structure by in situ hybridization.
    Caracciolo AB; Grenni P; Ciccoli R; Di Landa G; Cremisini C
    Pest Manag Sci; 2005 Sep; 61(9):863-9. PubMed ID: 16015577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics of communities of bacteria and ammonia-oxidizing microorganisms in response to simazine attenuation in agricultural soil.
    Wan R; Wang Z; Xie S
    Sci Total Environ; 2014 Feb; 472():502-8. PubMed ID: 24317158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of simazine by microorganisms isolated from soils of Spanish olive fields.
    Santiago-Mora R; Martin-Laurent F; de Prado R; Franco AR
    Pest Manag Sci; 2005 Sep; 61(9):917-21. PubMed ID: 16007568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of microorganisms and leaching on simazine attenuation in an agricultural soil.
    Morgante V; Flores C; Fadic X; González M; Hernández M; Cereceda-Balic F; Seeger M
    J Environ Manage; 2012 Mar; 95 Suppl():S300-5. PubMed ID: 21802195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils.
    Morgante V; López-López A; Flores C; González M; González B; Vásquez M; Rosselló-Mora R; Seeger M
    FEMS Microbiol Ecol; 2010 Jan; 71(1):114-26. PubMed ID: 19889033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene.
    Indest KJ; Crocker FH; Athow R
    J Microbiol Methods; 2007 Feb; 68(2):267-74. PubMed ID: 17010461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a novel simazine-degrading bacterium from agricultural soil of central Chile, Pseudomonas sp. MHP41.
    Hernández M; Villalobos P; Morgante V; González M; Reiff C; Moore E; Seeger M
    FEMS Microbiol Lett; 2008 Sep; 286(2):184-90. PubMed ID: 18647357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for cross-adaptation between s-triazine herbicides resulting in reduced efficacy under field conditions.
    Krutz LJ; Burke IC; Reddy KN; Zablotowicz RM
    Pest Manag Sci; 2008 Oct; 64(10):1024-30. PubMed ID: 18473320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In-situ enumeration and probing of pyrene-degrading soil bacteria.
    Jjemba PK; Kinkle BK; Shann JR
    FEMS Microbiol Ecol; 2006 Feb; 55(2):287-98. PubMed ID: 16420636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation of simazine-degrading bacterial consortia from olive fields of andalucía.
    Santiago R; Martin-Laurent F; de Prado R; Franco AR
    Commun Agric Appl Biol Sci; 2004; 69(3):35-40. PubMed ID: 15759392
    [No Abstract]   [Full Text] [Related]  

  • 12. Cyanuric acid--a s-triazine derivative as a nitrogen source for some soil microorganisms.
    Myśków W; Lasota T; Stachyra A
    Acta Microbiol Pol; 1983; 32(2):177-83. PubMed ID: 6196949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation and characterization of a novel simazine-degrading beta-proteobacterium and detection of genes encoding s-triazine-degrading enzymes.
    Iwasaki A; Takagi K; Yoshioka Y; Fujii K; Kojima Y; Harada N
    Pest Manag Sci; 2007 Mar; 63(3):261-8. PubMed ID: 17304635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Routine fluorescence in situ hybridization in soil.
    Bertaux J; Gloger U; Schmid M; Hartmann A; Scheu S
    J Microbiol Methods; 2007 Jun; 69(3):451-60. PubMed ID: 17442439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, central Chile.
    Flores C; Morgante V; González M; Navia R; Seeger M
    Chemosphere; 2009 Mar; 74(11):1544-9. PubMed ID: 19101008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new method for the detection of alkane-monooxygenase homologous genes (alkB) in soils based on PCR-hybridization.
    Kloos K; Munch JC; Schloter M
    J Microbiol Methods; 2006 Sep; 66(3):486-96. PubMed ID: 16522338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Arthrobacter nicotinovorans HIM, an atrazine-degrading bacterium, from agricultural soil New Zealand.
    Aislabie J; Bej AK; Ryburn J; Lloyd N; Wilkins A
    FEMS Microbiol Ecol; 2005 Apr; 52(2):279-86. PubMed ID: 16329913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradation of simazine in olive fields.
    Santiago R; De Prado R; Franco AR
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):409-13. PubMed ID: 15149137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simazine treatment history determines a significant herbicide degradation potential in soils that is not improved by bioaugmentation with Pseudomonas sp. ADP.
    Morán AC; Müller A; Manzano M; González B
    J Appl Microbiol; 2006 Jul; 101(1):26-35. PubMed ID: 16834588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A survey of the relative abundance of specific groups of cellulose degrading bacteria in anaerobic environments using fluorescence in situ hybridization.
    O'Sullivan C; Burrell PC; Clarke WP; Blackall LL
    J Appl Microbiol; 2007 Oct; 103(4):1332-43. PubMed ID: 17897237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.