BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18083116)

  • 1. Calyculin A retraction of mature megakaryocytes proplatelets from embryonic stem cells.
    Tamaru S; Kitajima K; Nakano T; Eto K; Yazaki A; Kobayashi T; Matsumoto T; Wada H; Katayama N; Nishikawa M
    Biochem Biophys Res Commun; 2008 Feb; 366(3):763-8. PubMed ID: 18083116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The May-Hegglin anomaly gene MYH9 is a negative regulator of platelet biogenesis modulated by the Rho-ROCK pathway.
    Chen Z; Naveiras O; Balduini A; Mammoto A; Conti MA; Adelstein RS; Ingber D; Daley GQ; Shivdasani RA
    Blood; 2007 Jul; 110(1):171-9. PubMed ID: 17392504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proplatelet formation is regulated by the Rho/ROCK pathway.
    Chang Y; Auradé F; Larbret F; Zhang Y; Le Couedic JP; Momeux L; Larghero J; Bertoglio J; Louache F; Cramer E; Vainchenker W; Debili N
    Blood; 2007 May; 109(10):4229-36. PubMed ID: 17244674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets?
    Kosaki G
    Int J Hematol; 2005 Apr; 81(3):208-19. PubMed ID: 15814332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Action of thrombopoietin at the megakaryocyte progenitor level is critical for the subsequent proplatelet production.
    Horie K; Miyazaki H; Hagiwara T; Tahara E; Matsumoto A; Kadoya T; Ogami K; Kato T
    Exp Hematol; 1997 Feb; 25(2):169-76. PubMed ID: 9015217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of recombinant interleukin-6 and thrombopoietin on isolated guinea pig bone marrow megakaryocyte protein phosphorylation and proplatelet formation.
    Leven RM; Clark B; Tablin F
    Blood Cells Mol Dis; 1997 Aug; 23(2):252-68. PubMed ID: 9410469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adhesive receptors, extracellular proteins and myosin IIA orchestrate proplatelet formation by human megakaryocytes.
    Balduini A; Pallotta I; Malara A; Lova P; Pecci A; Viarengo G; Balduini CL; Torti M
    J Thromb Haemost; 2008 Nov; 6(11):1900-7. PubMed ID: 18752571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The abnormal proplatelet formation in MYH9-related macrothrombocytopenia results from an increased actomyosin contractility and is rescued by myosin IIA inhibition.
    Chen Y; Boukour S; Milloud R; Favier R; Saposnik B; Schlegel N; Nurden A; Raslova H; Vainchenker W; Balland M; Nurden P; Debili N
    J Thromb Haemost; 2013 Dec; 11(12):2163-75. PubMed ID: 24165359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Platelet formation is the consequence of caspase activation within megakaryocytes.
    De Botton S; Sabri S; Daugas E; Zermati Y; Guidotti JE; Hermine O; Kroemer G; Vainchenker W; Debili N
    Blood; 2002 Aug; 100(4):1310-7. PubMed ID: 12149212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased megakaryopoiesis in cultures of CD34-enriched cord blood cells maintained at 39 degrees C.
    Proulx C; Dupuis N; St-Amour I; Boyer L; Lemieux R
    Biotechnol Bioeng; 2004 Dec; 88(6):675-80. PubMed ID: 15532059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes.
    Italiano JE; Lecine P; Shivdasani RA; Hartwig JH
    J Cell Biol; 1999 Dec; 147(6):1299-312. PubMed ID: 10601342
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha.
    Rojnuckarin P; Kaushansky K
    Blood; 2001 Jan; 97(1):154-61. PubMed ID: 11133755
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanics of proplatelet elaboration.
    Italiano JE; Patel-Hett S; Hartwig JH
    J Thromb Haemost; 2007 Jul; 5 Suppl 1():18-23. PubMed ID: 17635704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of primary megakaryocytes and studies of proplatelet formation.
    Leven RM
    Methods Mol Biol; 2004; 272():281-91. PubMed ID: 15226551
    [No Abstract]   [Full Text] [Related]  

  • 15. Shaping of terminal megakaryocyte differentiation and proplatelet development by sphingosine-1-phosphate receptor S1P4.
    Golfier S; Kondo S; Schulze T; Takeuchi T; Vassileva G; Achtman AH; Gräler MH; Abbondanzo SJ; Wiekowski M; Kremmer E; Endo Y; Lira SA; Bacon KB; Lipp M
    FASEB J; 2010 Dec; 24(12):4701-10. PubMed ID: 20686109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A product of their environment: do megakaryocytes rely on extracellular cues for proplatelet formation?
    Larson MK; Watson SP
    Platelets; 2006 Nov; 17(7):435-40. PubMed ID: 17074718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal mechanics of proplatelet maturation and platelet release.
    Thon JN; Montalvo A; Patel-Hett S; Devine MT; Richardson JL; Ehrlicher A; Larson MK; Hoffmeister K; Hartwig JH; Italiano JE
    J Cell Biol; 2010 Nov; 191(4):861-74. PubMed ID: 21079248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure of human megakaryocytes to high shear rates accelerates platelet production.
    Dunois-Lardé C; Capron C; Fichelson S; Bauer T; Cramer-Bordé E; Baruch D
    Blood; 2009 Aug; 114(9):1875-83. PubMed ID: 19525480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abnormal megakaryocyte morphology and proplatelet formation in mice with megakaryocyte-restricted MYH9 inactivation.
    Eckly A; Strassel C; Freund M; Cazenave JP; Lanza F; Gachet C; Léon C
    Blood; 2009 Apr; 113(14):3182-9. PubMed ID: 18984861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet demand modulates the type of intravascular protrusion of megakaryocytes in bone marrow.
    Kowata S; Isogai S; Murai K; Ito S; Tohyama K; Ema M; Hitomi J; Ishida Y
    Thromb Haemost; 2014 Oct; 112(4):743-56. PubMed ID: 24965909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.