BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18083223)

  • 1. Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair.
    Novikova LN; Pettersson J; Brohlin M; Wiberg M; Novikov LN
    Biomaterials; 2008 Mar; 29(9):1198-206. PubMed ID: 18083223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetoactive Composite Conduits Based on Poly(3-hydroxybutyrate) and Magnetite Nanoparticles for Repair of Peripheral Nerve Injury.
    Shlapakova LE; Botvin VV; Mukhortova YR; Zharkova II; Alipkina SI; Zeltzer A; Dudun AA; Makhina T; Bonartseva GA; Voinova VV; Wagner DV; Pariy I; Bonartsev AP; Surmenev RA; Surmeneva MA
    ACS Appl Bio Mater; 2024 Feb; 7(2):1095-1114. PubMed ID: 38270084
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-channel collagen conduit with aligned Schwann cells and endothelial cells for enhanced neuronal regeneration in spinal cord injury.
    Lee HY; Moon SH; Kang D; Choi E; Yang GH; Kim KN; Won JY; Yi S
    Biomater Sci; 2023 Dec; 11(24):7884-7896. PubMed ID: 37906468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microtopographical patterns promote different responses in fibroblasts and Schwann cells: A possible feature for neural implants.
    Mobini S; Kuliasha CA; Siders ZA; Bohmann NA; Jamal SM; Judy JW; Schmidt CE; Brennan AB
    J Biomed Mater Res A; 2021 Jan; 109(1):64-76. PubMed ID: 32419308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury.
    Nocera G; Jacob C
    Cell Mol Life Sci; 2020 Oct; 77(20):3977-3989. PubMed ID: 32277262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Repair Schwann cell update: Adaptive reprogramming, EMT, and stemness in regenerating nerves.
    Jessen KR; Arthur-Farraj P
    Glia; 2019 Mar; 67(3):421-437. PubMed ID: 30632639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of Hybrid Hydrogels: Next-Generation Biomaterials for Drug Delivery and Tissue Engineering.
    Rana MM; De la Hoz Siegler H
    Gels; 2024 Mar; 10(4):. PubMed ID: 38667635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Revealing an important role of piezoelectric polymers in nervous-tissue regeneration: A review.
    Shlapakova LE; Surmeneva MA; Kholkin AL; Surmenev RA
    Mater Today Bio; 2024 Apr; 25():100950. PubMed ID: 38318479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring Schwann Cell Behavior on Electrospun Polyhydroxybutyrate Scaffolds with Varied Pore Sizes and Fiber Thicknesses: Implications for Neural Tissue Engineering.
    Lezcano MF; Martínez-Rodríguez P; Godoy K; Hermosilla J; Acevedo F; Gareis IE; Dias FJ
    Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Production of Medium-Chain-Length Polyhydroxyalkanoates from
    Song L; Wang M; Yu D; Li Y; Yu H; Han X
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242866
    [No Abstract]   [Full Text] [Related]  

  • 11. Injectable hydrogels in central nervous system: Unique and novel platforms for promoting extracellular matrix remodeling and tissue engineering.
    Hasanzadeh E; Seifalian A; Mellati A; Saremi J; Asadpour S; Enderami SE; Nekounam H; Mahmoodi N
    Mater Today Bio; 2023 Jun; 20():100614. PubMed ID: 37008830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioprinted Schwann and Mesenchymal Stem Cell Co-Cultures for Enhanced Spatial Control of Neurite Outgrowth.
    Alakpa EV; Bahrd A; Wiklund K; Andersson M; Novikov LN; Ljungberg C; Kelk P
    Gels; 2023 Feb; 9(3):. PubMed ID: 36975621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Current Concepts of Biomaterial Scaffolds and Regenerative Therapy for Spinal Cord Injury.
    Suzuki H; Imajo Y; Funaba M; Ikeda H; Nishida N; Sakai T
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Application of Biomaterials in Spinal Cord Injury.
    Feng C; Deng L; Yong YY; Wu JM; Qin DL; Yu L; Zhou XG; Wu AG
    Int J Mol Sci; 2023 Jan; 24(1):. PubMed ID: 36614259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization.
    Kuna VK; Lundgren A; Anerillas LO; Kelk P; Brohlin M; Wiberg M; Kingham PJ; Novikova LN; Andersson G; Novikov LN
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrodeposition of chitosan/graphene oxide conduit to enhance peripheral nerve regeneration.
    Zhao YN; Wu P; Zhao ZY; Chen FX; Xiao A; Yue ZY; Han XW; Zheng Y; Chen Y
    Neural Regen Res; 2023 Jan; 18(1):207-212. PubMed ID: 35799544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a Novel Aspect of Tissue Scarring Following Experimental Spinal Cord Injury and the Implantation of Bioengineered Type-I Collagen Scaffolds in the Adult Rat: Involvement of Perineurial-like Cells?
    Altinova H; Achenbach P; Palm M; Katona I; Hermans E; Clusmann H; Weis J; Brook GA
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review.
    Kaplan B; Levenberg S
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163168
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of the Production of Poly(Hydroxybutyrate-
    Cabecas Segura P; Onderwater R; Deutschbauer A; Dewasme L; Wattiez R; Leroy B
    Appl Environ Microbiol; 2022 Mar; 88(6):e0158621. PubMed ID: 35080906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications.
    Zhang X; Liu XY; Yang H; Chen JN; Lin Y; Han SY; Cao Q; Zeng HS; Ye JW
    Front Bioeng Biotechnol; 2021; 9():798724. PubMed ID: 35071207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.