These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 18083620)

  • 1. Oscillatory changes related to the forced termination of a movement.
    Alegre M; Alvarez-Gerriko I; Valencia M; Iriarte J; Artieda J
    Clin Neurophysiol; 2008 Feb; 119(2):290-300. PubMed ID: 18083620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alpha and beta changes in cortical oscillatory activity in a go/no go randomly-delayed-response choice reaction time paradigm.
    Alegre M; Imirizaldu L; Valencia M; Iriarte J; Arcocha J; Artieda J
    Clin Neurophysiol; 2006 Jan; 117(1):16-25. PubMed ID: 16316781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imitating versus non-imitating movements: differences in frontal electroencephalographic oscillatory activity.
    Alegre M; Lázaro D; Valencia M; Iriarte J; Artieda J
    Neurosci Lett; 2006 May; 398(3):201-5. PubMed ID: 16483718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateralization of event-related beta desynchronization in the EEG during pre-cued reaction time tasks.
    Doyle LM; Yarrow K; Brown P
    Clin Neurophysiol; 2005 Aug; 116(8):1879-88. PubMed ID: 15979401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracerebral study of gamma rhythm reactivity in the sensorimotor cortex.
    Szurhaj W; Bourriez JL; Kahane P; Chauvel P; Mauguière F; Derambure P
    Eur J Neurosci; 2005 Mar; 21(5):1223-35. PubMed ID: 15813932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta rebound after different types of motor imagery in man.
    Pfurtscheller G; Neuper C; Brunner C; da Silva FL
    Neurosci Lett; 2005 Apr; 378(3):156-9. PubMed ID: 15781150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. γ-band oscillations in fronto-central areas during performance of a sensorimotor integration task: a qEEG coherence study.
    Teixeira S; Velasques B; Machado S; Cunha M; Domingues CA; Budde H; Anghinah R; Basile LF; Cagy M; Piedade R; Ribeiro P
    Neurosci Lett; 2010 Oct; 483(2):114-7. PubMed ID: 20678543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Event-related beta EEG-changes during passive and attempted foot movements in paraplegic patients.
    Müller-Putz GR; Zimmermann D; Graimann B; Nestinger K; Korisek G; Pfurtscheller G
    Brain Res; 2007 Mar; 1137(1):84-91. PubMed ID: 17229403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation.
    Luu P; Tucker DM; Makeig S
    Clin Neurophysiol; 2004 Aug; 115(8):1821-35. PubMed ID: 15261861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationship between oscillatory activity and motor reaction time in the parkinsonian subthalamic nucleus.
    Williams D; Kühn A; Kupsch A; Tijssen M; van Bruggen G; Speelman H; Hotton G; Loukas C; Brown P
    Eur J Neurosci; 2005 Jan; 21(1):249-58. PubMed ID: 15654862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Post-movement beta rebound is generated in motor cortex: evidence from neuromagnetic recordings.
    Jurkiewicz MT; Gaetz WC; Bostan AC; Cheyne D
    Neuroimage; 2006 Sep; 32(3):1281-9. PubMed ID: 16863693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cue-induced beta rebound during withholding of overt and covert foot movement.
    Solis-Escalante T; Müller-Putz GR; Pfurtscheller G; Neuper C
    Clin Neurophysiol; 2012 Jun; 123(6):1182-90. PubMed ID: 22349305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Post-movement beta synchronization after kinesthetic illusion, active and passive movements.
    Keinrath C; Wriessnegger S; Müller-Putz GR; Pfurtscheller G
    Int J Psychophysiol; 2006 Nov; 62(2):321-7. PubMed ID: 16904786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slow brain potential and oscillatory EEG manifestations of impaired temporal preparation in Parkinson's disease.
    Praamstra P; Pope P
    J Neurophysiol; 2007 Nov; 98(5):2848-57. PubMed ID: 17728390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frontal and central oscillatory changes related to different aspects of the motor process: a study in go/no-go paradigms.
    Alegre M; Gurtubay IG; Labarga A; Iriarte J; Valencia M; Artieda J
    Exp Brain Res; 2004 Nov; 159(1):14-22. PubMed ID: 15480586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG and FMRI coregistration to investigate the cortical oscillatory activities during finger movement.
    Formaggio E; Storti SF; Avesani M; Cerini R; Milanese F; Gasparini A; Acler M; Pozzi Mucelli R; Fiaschi A; Manganotti P
    Brain Topogr; 2008 Dec; 21(2):100-11. PubMed ID: 18648924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. EEG-correlates of trait anxiety in the stop-signal paradigm.
    Savostyanov AN; Tsai AC; Liou M; Levin EA; Lee JD; Yurganov AV; Knyazev GG
    Neurosci Lett; 2009 Jan; 449(2):112-6. PubMed ID: 18996169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age effects on the asymmetry of the motor system: evidence from cortical oscillatory activity.
    Vallesi A; McIntosh AR; Kovacevic N; Chan SC; Stuss DT
    Biol Psychol; 2010 Oct; 85(2):213-8. PubMed ID: 20637259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overlap and segregation in predorsal premotor cortex activations related to free selection of self-referenced and target-based finger movements.
    Beudel M; de Jong BM
    Cereb Cortex; 2009 Oct; 19(10):2361-71. PubMed ID: 19168663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Movement-related changes in cortical excitability: a steady-state SEP approach.
    Kourtis D; Seiss E; Praamstra P
    Brain Res; 2008 Dec; 1244():113-20. PubMed ID: 18845129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.