BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 18083775)

  • 1. Gene number expansion and contraction in vertebrate genomes with respect to invertebrate genomes.
    Prachumwat A; Li WH
    Genome Res; 2008 Feb; 18(2):221-32. PubMed ID: 18083775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family.
    Gillis WQ; St John J; Bowerman B; Schneider SQ
    BMC Evol Biol; 2009 Aug; 9():207. PubMed ID: 19695090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methylation of genomes and genes at the invertebrate-vertebrate boundary.
    Tweedie S; Charlton J; Clark V; Bird A
    Mol Cell Biol; 1997 Mar; 17(3):1469-75. PubMed ID: 9032274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of the Sox gene family within the chordate phylum.
    Heenan P; Zondag L; Wilson MJ
    Gene; 2016 Jan; 575(2 Pt 2):385-392. PubMed ID: 26361847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolutionary Transition of Promoter and Gene Body DNA Methylation across Invertebrate-Vertebrate Boundary.
    Keller TE; Han P; Yi SV
    Mol Biol Evol; 2016 Apr; 33(4):1019-28. PubMed ID: 26715626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Common evolutionary origin and birth-and-death process in the replication-independent histone H1 isoforms from vertebrate and invertebrate genomes.
    Eirín-López JM; Ruiz MF; González-Tizón AM; Martínez A; Ausió J; Sánchez L; Méndez J
    J Mol Evol; 2005 Sep; 61(3):398-407. PubMed ID: 16082565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple lineage specific expansions within the guanylyl cyclase gene family.
    Fitzpatrick DA; O'Halloran DM; Burnell AM
    BMC Evol Biol; 2006 Mar; 6():26. PubMed ID: 16549024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Saltatory evolution of the ectodermal neural cortex gene family at the vertebrate origin.
    Feiner N; Murakami Y; Breithut L; Mazan S; Meyer A; Kuraku S
    Genome Biol Evol; 2013; 5(8):1485-502. PubMed ID: 23843192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of gene evolution in vertebrate genome reveals novel insights into spine study.
    Yang Z; Hu F
    Gene; 2018 Dec; 679():360-368. PubMed ID: 30218752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Ohnolog Genes Originating from Whole Genome Duplication in Early Vertebrates, Based on Synteny Comparison across Multiple Genomes.
    Singh PP; Arora J; Isambert H
    PLoS Comput Biol; 2015 Jul; 11(7):e1004394. PubMed ID: 26181593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative and evolutionary studies of vertebrate ALDH1A-like genes and proteins.
    Holmes RS
    Chem Biol Interact; 2015 Jun; 234():4-11. PubMed ID: 25446856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolution of vertebrate Toll-like receptors.
    Roach JC; Glusman G; Rowen L; Kaur A; Purcell MK; Smith KD; Hood LE; Aderem A
    Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9577-82. PubMed ID: 15976025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary history of the alpha2,8-sialyltransferase (ST8Sia) gene family: tandem duplications in early deuterostomes explain most of the diversity found in the vertebrate ST8Sia genes.
    Harduin-Lepers A; Petit D; Mollicone R; Delannoy P; Petit JM; Oriol R
    BMC Evol Biol; 2008 Sep; 8():258. PubMed ID: 18811928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions.
    Larsson TA; Olsson F; Sundstrom G; Lundin LG; Brenner S; Venkatesh B; Larhammar D
    BMC Evol Biol; 2008 Jun; 8():184. PubMed ID: 18578868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New evidence for genome-wide duplications at the origin of vertebrates using an amphioxus gene set and completed animal genomes.
    Panopoulou G; Hennig S; Groth D; Krause A; Poustka AJ; Herwig R; Vingron M; Lehrach H
    Genome Res; 2003 Jun; 13(6A):1056-66. PubMed ID: 12799346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into vertebrate evolution from the chicken genome sequence.
    Furlong RF
    Genome Biol; 2005; 6(2):207. PubMed ID: 15693954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Substrate-dependent evolution of cytochrome P450: rapid turnover of the detoxification-type and conservation of the biosynthesis-type.
    Kawashima A; Satta Y
    PLoS One; 2014; 9(6):e100059. PubMed ID: 24977709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-type lectin-like domains in Fugu rubripes.
    Zelensky AN; Gready JE
    BMC Genomics; 2004 Aug; 5(1):51. PubMed ID: 15285787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Comparative analysis of gene family size provides insight into the adaptive evolution of vertebrates].
    Meng Y; Yang RL
    Yi Chuan; 2019 Feb; 41(2):158-174. PubMed ID: 30803946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary hierarchy of vertebrate-like heterotrimeric G protein families.
    Krishnan A; Mustafa A; Almén MS; Fredriksson R; Williams MJ; Schiöth HB
    Mol Phylogenet Evol; 2015 Oct; 91():27-40. PubMed ID: 26002831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.