BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 18083829)

  • 1. CTA4 transcription factor mediates induction of nitrosative stress response in Candida albicans.
    Chiranand W; McLeod I; Zhou H; Lynn JJ; Vega LA; Myers H; Yates JR; Lorenz MC; Gustin MC
    Eukaryot Cell; 2008 Feb; 7(2):268-78. PubMed ID: 18083829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional response of Candida albicans to nitric oxide and the role of the YHB1 gene in nitrosative stress and virulence.
    Hromatka BS; Noble SM; Johnson AD
    Mol Biol Cell; 2005 Oct; 16(10):4814-26. PubMed ID: 16030247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation of
    Chebaro Y; Lorenz M; Fa A; Zheng R; Gustin M
    Genetics; 2017 May; 206(1):151-162. PubMed ID: 28235888
    [No Abstract]   [Full Text] [Related]  

  • 4. In vivo systematic analysis of Candida albicans Zn2-Cys6 transcription factors mutants for mice organ colonization.
    Vandeputte P; Ischer F; Sanglard D; Coste AT
    PLoS One; 2011; 6(10):e26962. PubMed ID: 22073120
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fzf1p regulates an inducible response to nitrosative stress in Saccharomyces cerevisiae.
    Sarver A; DeRisi J
    Mol Biol Cell; 2005 Oct; 16(10):4781-91. PubMed ID: 16014606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Divergent functions of three Candida albicans zinc-cluster transcription factors (CTA4, ASG1 and CTF1) complementing pleiotropic drug resistance in Saccharomyces cerevisiae.
    Coste AT; Ramsdale M; Ischer F; Sanglard D
    Microbiology (Reading); 2008 May; 154(Pt 5):1491-1501. PubMed ID: 18451058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous nitric oxide accumulation is involved in the antifungal activity of Shikonin against Candida albicans.
    Liao Z; Yan Y; Dong H; Zhu Z; Jiang Y; Cao Y
    Emerg Microbes Infect; 2016 Aug; 5(8):e88. PubMed ID: 27530748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors supporting cysteine tolerance and sulfite production in Candida albicans.
    Hennicke F; Grumbt M; Lermann U; Ueberschaar N; Palige K; Böttcher B; Jacobsen ID; Staib C; Morschhäuser J; Monod M; Hube B; Hertweck C; Staib P
    Eukaryot Cell; 2013 Apr; 12(4):604-13. PubMed ID: 23417561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Msn2- and Msn4-like transcription factors play no obvious roles in the stress responses of the fungal pathogen Candida albicans.
    Nicholls S; Straffon M; Enjalbert B; Nantel A; Macaskill S; Whiteway M; Brown AJ
    Eukaryot Cell; 2004 Oct; 3(5):1111-23. PubMed ID: 15470239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation and alliance of regulatory pathways in C. albicans during mammalian infection.
    Xu W; Solis NV; Ehrlich RL; Woolford CA; Filler SG; Mitchell AP
    PLoS Biol; 2015 Feb; 13(2):e1002076. PubMed ID: 25693184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and characterization of Cor33p, a novel protein implicated in tolerance towards oxidative stress in Candida albicans.
    Sohn K; Roehm M; Urban C; Saunders N; Rothenstein D; Lottspeich F; Schröppel K; Brunner H; Rupp S
    Eukaryot Cell; 2005 Dec; 4(12):2160-9. PubMed ID: 16339733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans.
    Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H
    Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Candida albicans CTR1 gene encodes a functional copper transporter.
    Marvin ME; Williams PH; Cashmore AM
    Microbiology (Reading); 2003 Jun; 149(Pt 6):1461-1474. PubMed ID: 12777486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel role for the transcription factor Cwt1p as a negative regulator of nitrosative stress in Candida albicans.
    Sellam A; Tebbji F; Whiteway M; Nantel A
    PLoS One; 2012; 7(8):e43956. PubMed ID: 22952822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.
    Williams RB; Lorenz MC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937647
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TEA/ATTS transcription factor CaTec1p regulates hyphal development and virulence in Candida albicans.
    Schweizer A; Rupp S; Taylor BN; Röllinghoff M; Schröppel K
    Mol Microbiol; 2000 Nov; 38(3):435-45. PubMed ID: 11069668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a putative transcription factor in Candida albicans that can complement the mating defect of Saccharomyces cerevisiae ste12 mutants.
    Malathi K; Ganesan K; Datta A
    J Biol Chem; 1994 Sep; 269(37):22945-51. PubMed ID: 8083193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRZ1, a target of the calcineurin pathway in Candida albicans.
    Karababa M; Valentino E; Pardini G; Coste AT; Bille J; Sanglard D
    Mol Microbiol; 2006 Mar; 59(5):1429-51. PubMed ID: 16468987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small but crucial: the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans.
    Mayer FL; Wilson D; Jacobsen ID; Miramón P; Slesiona S; Bohovych IM; Brown AJ; Hube B
    PLoS One; 2012; 7(6):e38584. PubMed ID: 22685587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A family of secreted pathogenesis-related proteins in Candida albicans.
    Röhm M; Lindemann E; Hiller E; Ermert D; Lemuth K; Trkulja D; Sogukpinar O; Brunner H; Rupp S; Urban CF; Sohn K
    Mol Microbiol; 2013 Jan; 87(1):132-51. PubMed ID: 23136884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.