These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 18083873)
1. Enzymic approach to eurythermalism of Alvinella pompejana and its episymbionts. Lee CK; Cary SC; Murray AE; Daniel RM Appl Environ Microbiol; 2008 Feb; 74(3):774-82. PubMed ID: 18083873 [TBL] [Abstract][Full Text] [Related]
2. Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Grzymski JJ; Murray AE; Campbell BJ; Kaplarevic M; Gao GR; Lee C; Daniel R; Ghadiri A; Feldman RA; Cary SC Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17516-21. PubMed ID: 18987310 [TBL] [Abstract][Full Text] [Related]
3. Eurythermalism and the temperature dependence of enzyme activity. Lee CK; Daniel RM; Shepherd C; Saul D; Cary SC; Danson MJ; Eisenthal R; Peterson ME FASEB J; 2007 Jun; 21(8):1934-41. PubMed ID: 17341686 [TBL] [Abstract][Full Text] [Related]
4. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Campbell BJ; Stein JL; Cary SC Appl Environ Microbiol; 2003 Sep; 69(9):5070-8. PubMed ID: 12957888 [TBL] [Abstract][Full Text] [Related]
5. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Hobbs JK; Shepherd C; Saul DJ; Demetras NJ; Haaning S; Monk CR; Daniel RM; Arcus VL Mol Biol Evol; 2012 Feb; 29(2):825-35. PubMed ID: 21998276 [TBL] [Abstract][Full Text] [Related]
6. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Hamajima Y; Nagae T; Watanabe N; Ohmae E; Kato-Yamada Y; Kato C Extremophiles; 2016 Mar; 20(2):177-86. PubMed ID: 26847201 [TBL] [Abstract][Full Text] [Related]
7. Molecular Identification and Localization of Filamentous Symbiotic Bacteria Associated with the Hydrothermal Vent Annelid Alvinella pompejana. Cary SC; Cottrell MT; Stein JL; Camacho F; Desbruyeres D Appl Environ Microbiol; 1997 Mar; 63(3):1124-30. PubMed ID: 16535543 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a novel spirochete associated with the hydrothermal vent polychaete annelid, Alvinella pompejana. Campbell BJ; Cary SC Appl Environ Microbiol; 2001 Jan; 67(1):110-7. PubMed ID: 11133434 [TBL] [Abstract][Full Text] [Related]
10. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related]
11. Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Cottrell MT; Cary SC Appl Environ Microbiol; 1999 Mar; 65(3):1127-32. PubMed ID: 10049872 [TBL] [Abstract][Full Text] [Related]
12. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Haddad A; Camacho F; Durand P; Cary SC Appl Environ Microbiol; 1995 May; 61(5):1679-87. PubMed ID: 7544093 [TBL] [Abstract][Full Text] [Related]
13. Similar structural stabilities of 3-isopropylmalate dehydrogenases from the obligatory piezophilic bacterium Shewanella benthica strain DB21MT-2 and its atmospheric congener S. oneidensis strain MR-1. Ohmae E; Hamajima Y; Nagae T; Watanabe N; Kato C Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):680-691. PubMed ID: 29630970 [TBL] [Abstract][Full Text] [Related]
14. Deep transcriptome-sequencing and proteome analysis of the hydrothermal vent annelid Alvinella pompejana identifies the CvP-bias as a robust measure of eukaryotic thermostability. Holder T; Basquin C; Ebert J; Randel N; Jollivet D; Conti E; Jékely G; Bono F Biol Direct; 2013 Jan; 8():2. PubMed ID: 23324115 [TBL] [Abstract][Full Text] [Related]
15. Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Campbell BJ; Jeanthon C; Kostka JE; Luther GW; Cary SC Appl Environ Microbiol; 2001 Oct; 67(10):4566-72. PubMed ID: 11571157 [TBL] [Abstract][Full Text] [Related]
16. The dependence of enzyme activity on temperature: determination and validation of parameters. Peterson ME; Daniel RM; Danson MJ; Eisenthal R Biochem J; 2007 Mar; 402(2):331-7. PubMed ID: 17092210 [TBL] [Abstract][Full Text] [Related]
17. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius. Takahashi K; Nakanishi F; Tomita T; Akiyama N; Lassak K; Albers SV; Kuzuyama T; Nishiyama M Extremophiles; 2016 Nov; 20(6):843-853. PubMed ID: 27590116 [TBL] [Abstract][Full Text] [Related]
18. Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. Watanabe K; Ohkuri T; Yokobori S; Yamagishi A J Mol Biol; 2006 Jan; 355(4):664-74. PubMed ID: 16309701 [TBL] [Abstract][Full Text] [Related]
19. Drugs against Mycobacterium tuberculosis 3-isopropylmalate dehydrogenase can be developed using homologous enzymes as surrogate targets. Graczer E; Bacso A; Konya D; Kazi A; Soos T; Molnar L; Szimler T; Beinrohr L; Szilagyi A; Zavodszky P; Vas M Protein Pept Lett; 2014; 21(12):1295-307. PubMed ID: 24909230 [TBL] [Abstract][Full Text] [Related]
20. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase. Sharma R; Sastry GN PLoS One; 2015; 10(12):e0144294. PubMed ID: 26657745 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]