These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 18083904)
1. Metabolic response to an acute jump in cardiac workload: effects on malonyl-CoA, mechanical efficiency, and fatty acid oxidation. Zhou L; Huang H; Yuan CL; Keung W; Lopaschuk GD; Stanley WC Am J Physiol Heart Circ Physiol; 2008 Feb; 294(2):H954-60. PubMed ID: 18083904 [TBL] [Abstract][Full Text] [Related]
2. Regulation of cardiac malonyl-CoA content and fatty acid oxidation during increased cardiac power. King KL; Okere IC; Sharma N; Dyck JR; Reszko AE; McElfresh TA; Kerner J; Chandler MP; Lopaschuk GD; Stanley WC Am J Physiol Heart Circ Physiol; 2005 Sep; 289(3):H1033-7. PubMed ID: 15821035 [TBL] [Abstract][Full Text] [Related]
3. Metoprolol improves cardiac function and modulates cardiac metabolism in the streptozotocin-diabetic rat. Sharma V; Dhillon P; Wambolt R; Parsons H; Brownsey R; Allard MF; McNeill JH Am J Physiol Heart Circ Physiol; 2008 Apr; 294(4):H1609-20. PubMed ID: 18203848 [TBL] [Abstract][Full Text] [Related]
4. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5'-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. Kudo N; Barr AJ; Barr RL; Desai S; Lopaschuk GD J Biol Chem; 1995 Jul; 270(29):17513-20. PubMed ID: 7615556 [TBL] [Abstract][Full Text] [Related]
5. Malonyl CoA control of fatty acid oxidation in the newborn heart in response to increased fatty acid supply. Onay-Besikci A; Sambandam N Can J Physiol Pharmacol; 2006 Nov; 84(11):1215-22. PubMed ID: 17218986 [TBL] [Abstract][Full Text] [Related]
6. Regulation of pyruvate dehydrogenase activity and citric acid cycle intermediates during high cardiac power generation. Sharma N; Okere IC; Brunengraber DZ; McElfresh TA; King KL; Sterk JP; Huang H; Chandler MP; Stanley WC J Physiol; 2005 Jan; 562(Pt 2):593-603. PubMed ID: 15550462 [TBL] [Abstract][Full Text] [Related]
7. Malonyl CoA control of fatty acid oxidation in the ischemic heart. Dyck JR; Lopaschuk GD J Mol Cell Cardiol; 2002 Sep; 34(9):1099-109. PubMed ID: 12392882 [TBL] [Abstract][Full Text] [Related]
8. Increased cardiac fatty acid uptake with dobutamine infusion in swine is accompanied by a decrease in malonyl CoA levels. Hall JL; Lopaschuk GD; Barr A; Bringas J; Pizzurro RD; Stanley WC Cardiovasc Res; 1996 Nov; 32(5):879-85. PubMed ID: 8944819 [TBL] [Abstract][Full Text] [Related]
9. Malonyl coenzyme a decarboxylase inhibition protects the ischemic heart by inhibiting fatty acid oxidation and stimulating glucose oxidation. Dyck JR; Cheng JF; Stanley WC; Barr R; Chandler MP; Brown S; Wallace D; Arrhenius T; Harmon C; Yang G; Nadzan AM; Lopaschuk GD Circ Res; 2004 May; 94(9):e78-84. PubMed ID: 15105298 [TBL] [Abstract][Full Text] [Related]
10. Acetyl-CoA carboxylase involvement in the rapid maturation of fatty acid oxidation in the newborn rabbit heart. Lopaschuk GD; Witters LA; Itoi T; Barr R; Barr A J Biol Chem; 1994 Oct; 269(41):25871-8. PubMed ID: 7929291 [TBL] [Abstract][Full Text] [Related]
11. AMP-activated protein kinase regulation of fatty acid oxidation in the ischaemic heart. Hopkins TA; Dyck JR; Lopaschuk GD Biochem Soc Trans; 2003 Feb; 31(Pt 1):207-12. PubMed ID: 12546686 [TBL] [Abstract][Full Text] [Related]
12. Acute regulation of fatty acid oxidation and amp-activated protein kinase in human umbilical vein endothelial cells. Dagher Z; Ruderman N; Tornheim K; Ido Y Circ Res; 2001 Jun; 88(12):1276-82. PubMed ID: 11420304 [TBL] [Abstract][Full Text] [Related]
13. Leptin activates cardiac fatty acid oxidation independent of changes in the AMP-activated protein kinase-acetyl-CoA carboxylase-malonyl-CoA axis. Atkinson LL; Fischer MA; Lopaschuk GD J Biol Chem; 2002 Aug; 277(33):29424-30. PubMed ID: 12058043 [TBL] [Abstract][Full Text] [Related]
14. Control of hepatic fatty acid oxidation by 5'-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism. Velasco G; Geelen MJ; Guzmán M Arch Biochem Biophys; 1997 Jan; 337(2):169-75. PubMed ID: 9016810 [TBL] [Abstract][Full Text] [Related]
15. LKB1 and the regulation of malonyl-CoA and fatty acid oxidation in muscle. Thomson DM; Brown JD; Fillmore N; Condon BM; Kim HJ; Barrow JR; Winder WW Am J Physiol Endocrinol Metab; 2007 Dec; 293(6):E1572-9. PubMed ID: 17925454 [TBL] [Abstract][Full Text] [Related]
16. Carnitine palmitoyltransferase I (CPT I) activity and its regulation by malonyl-CoA are modulated by age and cold exposure in skeletal muscle mitochondria from newborn pigs. Schmidt I; Herpin P J Nutr; 1998 May; 128(5):886-93. PubMed ID: 9566999 [TBL] [Abstract][Full Text] [Related]
17. Reciprocal regulation of cardiac β-oxidation and pyruvate dehydrogenase by insulin. Elnwasany A; Ewida HA; Menendez-Montes I; Mizerska M; Fu X; Kim CW; Horton JD; Burgess SC; Rothermel BA; Szweda PA; Szweda LI J Biol Chem; 2024 Jul; 300(7):107412. PubMed ID: 38796064 [TBL] [Abstract][Full Text] [Related]
18. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. Saddik M; Gamble J; Witters LA; Lopaschuk GD J Biol Chem; 1993 Dec; 268(34):25836-45. PubMed ID: 7902355 [TBL] [Abstract][Full Text] [Related]
19. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Tomas E; Tsao TS; Saha AK; Murrey HE; Zhang Cc Cc; Itani SI; Lodish HF; Ruderman NB Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16309-13. PubMed ID: 12456889 [TBL] [Abstract][Full Text] [Related]
20. Role of malonyl-CoA in heart disease and the hypothalamic control of obesity. Folmes CD; Lopaschuk GD Cardiovasc Res; 2007 Jan; 73(2):278-87. PubMed ID: 17126822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]