These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 18084483)

  • 1. Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-microm broadband amplification.
    Ohishi Y; Mori A; Yamada M; Ono H; Nishida Y; Oikawa K
    Opt Lett; 1998 Feb; 23(4):274-6. PubMed ID: 18084483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband amplification and highly efficient lasing in erbium-doped tellurite microstructured fibers.
    Jia Z; Li H; Meng X; Liu L; Qin G; Qin W
    Opt Lett; 2013 Apr; 38(7):1049-51. PubMed ID: 23546239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Broadband gain performance in the mid-IR using supercontinuum: 2.7  µm gain in high-purity Er
    Muraviev SV; Dorofeev VV; Motorin SE; Koptev MY; Kim AV
    Appl Opt; 2022 Nov; 61(32):9701-9707. PubMed ID: 36606912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gain cross saturation and spectral hole burning in wideband erbium-doped fiber amplifiers.
    Tachibana M; Laming RI; Morkel PR; Payne DN
    Opt Lett; 1991 Oct; 16(19):1499-501. PubMed ID: 19777013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region.
    Zhou B; Lin H; Pun EY
    Opt Express; 2010 Aug; 18(18):18805-10. PubMed ID: 20940773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ce(3+)/Yb(3+)/Er(3+) triply doped bismuth borosilicate glass: a potential fiber material for broadband near-infrared fiber amplifiers.
    Chu Y; Ren J; Zhang J; Peng G; Yang J; Wang P; Yuan L
    Sci Rep; 2016 Sep; 6():33865. PubMed ID: 27646191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Index matching between passive and active tellurite glasses for use in microstructured fiber lasers: erbium doped lanthanum-tellurite glass.
    Oermann MR; Ebendorff-Heidepriem H; Li Y; Foo TC; Monro TM
    Opt Express; 2009 Aug; 17(18):15578-84. PubMed ID: 19724556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high-power erbium-doped fiber amplifier.
    Tamura K; Yoshida E; Sugawa T; Nakazawa M
    Opt Lett; 1995 Aug; 20(15):1631-3. PubMed ID: 19862106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Demonstration of an erbium-doped fiber with annular doping for low gain compression in cladding-pumped amplifiers.
    Matte-Breton C; Chen H; Fontaine NK; Ryf R; Essiambre RJ; Kelly C; Jin C; Messaddeq Y; LaRochelle S
    Opt Express; 2018 Oct; 26(20):26633-26645. PubMed ID: 30469746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards ten-watt-level 3-5 µm Raman lasers using tellurite fiber.
    Zhu G; Geng L; Zhu X; Li L; Chen Q; Norwood RA; Manzur T; Peyghambarian N
    Opt Express; 2015 Mar; 23(6):7559-73. PubMed ID: 25837094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Broadband near-infrared luminescence in erbium ion single-doped tellurite glass for optical amplification.
    Zhou Z; Li Y; Jiang Y; Wang Z; Yin P; Zhang L; Zhang L
    Opt Lett; 2023 Feb; 48(3):815-818. PubMed ID: 36723596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass.
    Fernandez TT; Della Valle G; Osellame R; Jose G; Chiodo N; Jha A; Laporta P
    Opt Express; 2008 Sep; 16(19):15198-205. PubMed ID: 18795058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers.
    Lim EL; Alam SU; Richardson DJ
    Opt Express; 2012 Jun; 20(13):13886-95. PubMed ID: 22714454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of (4)I(15/2) and (4)I(13/2) Stark-level energies in erbium-doped aluminosilicate glass fibers.
    Desurvire E; Simpson JR
    Opt Lett; 1990 May; 15(10):547-9. PubMed ID: 19768003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cladding-pumped erbium-doped multicore fiber amplifier.
    Abedin KS; Taunay TF; Fishteyn M; DiGiovanni DJ; Supradeepa VR; Fini JM; Yan MF; Zhu B; Monberg EM; Dimarcello FV
    Opt Express; 2012 Aug; 20(18):20191-200. PubMed ID: 23037071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient gain and cross talk in erbium-doped fiber amplifiers.
    Giles CR; Desurvire E; Simpson JR
    Opt Lett; 1989 Aug; 14(16):880-2. PubMed ID: 19752999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A higher-order-mode erbium-doped-fiber amplifier.
    Nicholson JW; Fini JM; DeSantolo AM; Monberg E; DiMarcello F; Fleming J; Headley C; DiGiovanni DJ; Ghalmi S; Ramachandran S
    Opt Express; 2010 Aug; 18(17):17651-7. PubMed ID: 20721151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient erbium-doped fiber amplifier at a 1.53-microm wavelength with a high output saturation power.
    Desurvire E; Giles CR; Simpson JR; Zyskind JL
    Opt Lett; 1989 Nov; 14(22):1266-8. PubMed ID: 19759654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-wideband and flat-gain optical properties of the PbS quantum dots-doped silica fiber.
    Zheng J; Dong Y; Pan X; Wen J; Chen Z; Pang F; Shang Y; Luo Y; Peng GD; Wang T
    Opt Express; 2019 Dec; 27(26):37900-37909. PubMed ID: 31878563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers.
    Paul MC; Harun SW; Huri NA; Hamzah A; Das S; Pal M; Bhadra SK; Ahmad H; Yoo S; Kalita MP; Boyland AJ; Sahu JK
    Opt Lett; 2010 Sep; 35(17):2882-4. PubMed ID: 20808356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.