These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 18085257)

  • 1. Contribution of pacemaker neurons to respiratory rhythms generation in vitro.
    Peña F
    Adv Exp Med Biol; 2008; 605():114-8. PubMed ID: 18085257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of riluzole and flufenamic acid on eupnea and gasping of neonatal mice in vivo.
    Peña F; Aguileta MA
    Neurosci Lett; 2007 Mar; 415(3):288-93. PubMed ID: 17276002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gasping activity in vitro: a rhythm dependent on 5-HT2A receptors.
    Tryba AK; Peña F; Ramirez JM
    J Neurosci; 2006 Mar; 26(10):2623-34. PubMed ID: 16525041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Norepinephrine differentially modulates different types of respiratory pacemaker and nonpacemaker neurons.
    Viemari JC; Ramirez JM
    J Neurophysiol; 2006 Apr; 95(4):2070-82. PubMed ID: 16394066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation.
    Del Negro CA; Morgado-Valle C; Hayes JA; Mackay DD; Pace RW; Crowder EA; Feldman JL
    J Neurosci; 2005 Jan; 25(2):446-53. PubMed ID: 15647488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia.
    Peña F; Parkis MA; Tryba AK; Ramirez JM
    Neuron; 2004 Jul; 43(1):105-17. PubMed ID: 15233921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Medullary pacemaker neurons are essential for both eupnea and gasping in mammals vs. medullary pacemaker neurons are essential for gasping, but not eupnea, in mammals.
    Eugenín JL; Muller KJ
    J Appl Physiol (1985); 2007 Aug; 103(2):724; author reply 726-7. PubMed ID: 17768784
    [No Abstract]   [Full Text] [Related]  

  • 8. Medullary pacemaker neurons are essential for both eupnea and gasping in mammals vs. medullary pacemaker neurons are essential for gasping, but not eupnea, in mammals.
    Peña F
    J Appl Physiol (1985); 2007 Aug; 103(2):723-4; author reply 726-7. PubMed ID: 17768783
    [No Abstract]   [Full Text] [Related]  

  • 9. Activation of alpha-2 noradrenergic receptors is critical for the generation of fictive eupnea and fictive gasping inspiratory activities in mammals in vitro.
    Viemari JC; Garcia AJ; Doi A; Ramirez JM
    Eur J Neurosci; 2011 Jun; 33(12):2228-37. PubMed ID: 21615559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Noradrenergic receptor activation specifically modulates the generation of sighs in vivo and in vitro.
    Viemari JC; Garcia AJ; Doi A; Elsen G; Ramirez JM
    Front Neural Circuits; 2013; 7():179. PubMed ID: 24273495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What role do pacemakers play in the generation of respiratory rhythm?
    Del Negro CA; Pace RW; Hayes JA
    Adv Exp Med Biol; 2008; 605():88-93. PubMed ID: 18085252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Background sodium current stabilizes bursting in respiratory pacemaker neurons.
    Tryba AK; Ramirez JM
    J Neurobiol; 2004 Sep; 60(4):481-9. PubMed ID: 15307152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are pacemaker properties required for respiratory rhythm generation in adult turtle brain stems in vitro?
    Johnson SM; Wiegel LM; Majewski DJ
    Am J Physiol Regul Integr Comp Physiol; 2007 Aug; 293(2):R901-10. PubMed ID: 17522127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prostaglandin E2 differentially modulates the central control of eupnoea, sighs and gasping in mice.
    Koch H; Caughie C; Elsen FP; Doi A; Garcia AJ; Zanella S; Ramirez JM
    J Physiol; 2015 Jan; 593(1):305-19. PubMed ID: 25556802
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Eupnea of in situ rats persists following blockers of in vitro pacemaker burster activities.
    St-John WM
    Respir Physiol Neurobiol; 2008 Feb; 160(3):353-6. PubMed ID: 18207465
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential modulation of neural network and pacemaker activity underlying eupnea and sigh-breathing activities.
    Tryba AK; Peña F; Lieske SP; Viemari JC; Thoby-Brisson M; Ramirez JM
    J Neurophysiol; 2008 May; 99(5):2114-25. PubMed ID: 18287547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stabilization of bursting in respiratory pacemaker neurons.
    Tryba AK; Peña F; Ramirez JM
    J Neurosci; 2003 Apr; 23(8):3538-46. PubMed ID: 12716963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory rhythm: an emergent network property?
    Del Negro CA; Morgado-Valle C; Feldman JL
    Neuron; 2002 May; 34(5):821-30. PubMed ID: 12062027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of riluzole on respiratory rhythm generation in the brainstem-spinal cord preparation from newborn rat.
    Lin ST; Onimaru H
    Neurosci Res; 2015 May; 94():28-36. PubMed ID: 25498952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of neurokinin receptors and ionic mechanisms within the respiratory network of the lamprey.
    Mutolo D; Bongianni F; Cinelli E; Pantaleo T
    Neuroscience; 2010 Sep; 169(3):1136-49. PubMed ID: 20540991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.